CHAPEL BY EXAMPLE

IMAGE PROCESSING

Revised for the April 2018 Chapel 1.17 Release

will not work with 1.18 or later

€ 2015-2019 Greg Kreider, Primordial Machine Vision Systems

All rights reserved.

Chapel By Example - Image Processing

Table of Contents

INTRODUCGTION.....ccoutiiteiteteeteeteeitestte st et et etesatesstesbe e st eseesatesseesbee st easesatesaeessaesstesseeasesasesaeesstesseeaseeaseeesaseeens 5
AN EXAMPLE....c ettt ettt ettt e bt et e et e ea e e e at e s st e bt e bt et e et e s at e e bt e bt e bt et e et e e e aateeeeabeeeeanteeeans 7
OVERVIEW ...ttt ettt ettt ettt et e s bt e s bt et e et e s ateeat e s st e bt et e e abeeatesate st e beeabeeabeeutessbeesnsteesneeesnns 11
IINSTALL ... ctteteeieecieeteett et et e et e et e et e st e s st e seesse e s eensesst e ssesseanseansesnseassesnseseensesnseenseansesnsenseenseenseensesnsesssenseenseenns 12
Compiling and Running a Chapel Program...........cccciiiiiiiieiiiiiienieeeie ettt ettt ettt e e e eieeee s 13
IMAGE INTERFACE (DIIE). ¢ tteuteeteetertenttenteerieeiteetesttesteetestesutesatesste st esesbesutesstesstensessesasesatesstenseesseesanseesnns 14
IITOAUCTION. ¢ttt ettt ettt e e bt e bt et et e eat e e bt e s bt e bt et e et e eubeeatesbt e beeabeeabeeabaeeeabaeenasaeenan 14

C Library (img_png_vV1.C, tESE_PIG.C).ceeuteerierieeriteeteeeteesuteeruteeetteeteesteesuseesuteesstesaseesastesbeesseesaseesssnseeeeans 14

C interface from Chapel (rw_png_v*.ChPL)......cocuiieieececeee et e e st e e e e e 15
PIIMITIVE TYPOS...ceeiiiiiitee ittt ettt e ettt e e ettt e e e ettt e e s e s as et e e e e e ansaeeeee s nnseaeesessnnreaaesanaens 16
Variable DECLarations........c.ceeterterteriierieeieeesteett et et e e st e st e st e bt et e sate st e s bt e s bt e bt eabe st e entessee bt ebeeaseeaeees 16

S a0 1 T (0] (0] 37 1 =T OO P ST PPPPPPPP 20
External Linkage (tW_PNg_ VI.CHPL)....cccviiiiiiiiiicieecieesteccee st e ettt e ressveesteeeveessteessseesnseessssaaeessnnnneeess 23
Aside: Embedding C Requirements (rw_png_vI1b.Chpl)......cccceevirieniininiinieneeneeteieeiceeeseeneeeeeie e 26
Structural Types (TwW_PNg_V2.ChPI)..c.uiiiiieeieeeee ettt ettt et st e bt e st et e aeessaee e 26
Modules (TW_PNE_V3.CHPL).c..uiiiiiecieeceeceece ettt see e sbe e s e e s e s e e srseesbeeessaeesbaeestaeenseennseens 35
Aside: Main / Program Organization (tw_png_v4.ChPL).......cccceeiiiiiiiiieiiieceeceesieeere e eseeeseeeseee s s 40

R = 0 L] TSP 43
EXOICISES. ...ttt ettt ettt ettt et e sttt e s bt e e s et e e s bt e e s mbe e e s be e e e s rete s n bt e e e nbe e e e ba e e e e rae e e nranesaneeeeeanes 44
Bl ettt ettt et h e e bt et et et e s a e e bt e bt e bt et e et e e ht e bt e bt e bt et e et e enbeeeeabaeena 44
COLOR CONVERSION (COLOT)....uuttiietiteeiieeeeiteeesireeeesiteeeeeteeessseesassssessssssessssesssssssssssssssssssssssssssssssssssseessssnnnns 45
IIETOAUCHION. ...ttt ettt et et ettt e bt e e bt e et e e e ab e e eut e e be e e bt e e bt e eabeeeabeeeateeamteebbeeeeeaanbaaeeaaans 45
ASTAR: COlOT SPACES.....ciciuriereciieeeieeieiteeeeteeerteeeesteeestteeeeteeeessseesastaseassseessssaasessseesassseesasseesessssesssssaesassseen 45
Language DeSCIIPLION.eiieuteieriteeeiteeeeitte ettt eeetteestteeessteeesbaeessuteeesssaessasaeesssseeessssaessssseesssaeessssaesssssnsss 48
EXDPressions and OPEIAtOIS.ceceerueriertereenieeteetesteseesseeteesteesteseesseesseenseesesmsesseesseesseeessnseesasseesanseens 48
STALEITIENES. ..ce e eeeeteeettee ettt ettt sttt e st e et e st e e e et e e s beeessba e e ssaeeesanaeesanneeesanbaeesantanaeeeeeessenennnnrree 52
ENUINIETALIONS. c. .ttt ettt ettt et e s s et e s a e e s et e e sba e e ssbaeesamnaeesabaeesennanesssnns 55
TUPIES. ..ttt ettt ettt et s bt e st e e bt e st e e a b e e ae e e bt e e b e e s be e e abeesab e e hte e bae e nteeeeenbaaeens 57
Arrays and Ranges (1ab_V1.ChPL)......oo ittt ettt ettt e s 60
Domains (1aD_V2.CHPI).c...iiiiieiiiieeceeeeee ettt sttt e e e et e sbe e st e e st e e e s e e st e e e s e nbraaeeeennrraee s 65
Program Organization (COlor_CONVETt.CHPI).......cciviiiiiiieiireieenieerieesteeseessree st e ereesreessreesssssaeessssssenesssnsnnees 69
Aside: First-Class Functions (color_convert_v1b.chpl, ip_color_v1b.chpl).....ccccccooroiiiiiiiiieiiiieeeeeeen. 69

L = D L] TP SO 71
EXOICISES. ...eiiiiiiiiiiiiiiiie ettt ettt s bt s bb e s bt e s ba e s aa e s e bt e s e a e s s naa e e snreesennns 72
FLBS. ettt b et ettt st s bt bt et et et sa e e bt e bt e bt et e st e e bt e bt e bt et e e ate et e enbeesenbeeenn 72
GABOR FILTER (ADOT)....ceutteuteetteiteteeie ettt sttt ettt et et e st e et e s at e bt et e st e eatesatesseebeenseenseeabeeaeasteeannteesbeeeanns 73
IITOQUCHION. .ttt ettt e bt e bt et e et e st e eut e bt e bt eabeeutesuteebte bt enbeensesateeseeesabteeenneeeensee 73
ASIAE: EAZE DBLECLOTS. .. veevrereeeeieeeieeeitterteesteesttessteessteesseessteesseessstesseessaessseessseesssessseessseesssaesssssssesessasssnees 73

2 Chapel By Example - Image Processing

SUbAOmMAinSs and SUDTANGES.ccecviieieeiieiiieecteeceeeteeeteesreeseeesteessseeeseesssaessseessseesseessseessseesssseessssssseessasnns 80

RaNGE COMIMANGS.eeiiiieiieiieete ettt ettt ettt et s e et e e sabe e st e e atessbte s bt e sabeesabeeeabeesaeeenneessaeeean 80
Domain COMIMANAS.....ccc.ceiiuiieitieieeeteeete ettt e et e st e e st e e bte s bt e st e e s bt e s ateesbtesabeeeseeeabeeeuseesanseeeessans 83
ATTAY COMIMANAS. ..eevvvievreeiteerireeeieeeieeeteeseeeseeesseessseesseesssessssessseessssssssessssessssessssessssessssssseessssssasessssnseees 85
Gabor Filters (8abor_v*.ChPL)......oiciiiieiieciecee ettt ettt st e s te e st et e s st e ssseessaesssaesnbaesnseennseenn 86
Indexing with Offsets (GaDOTr_VI.CHPL).....ccouiiiiiiiiieiieciiece et te et sete e e ebae et ae e e e ensaaeeeas 90
Indexing with Zippers (8aDOr_V2.CHhPI)....ccuiiiiiiieieiie ettt te e s etr e e e e e s e s e s evaaaeeeeas 90
Indexing with Translations and Zippers (8abor_v3.Chpl).....cccccoiiiiriiniinireieeeeeeeec e 91
Reductions and Intermediate Results (8abor_v4.Chpl)......c.cocieviiiiniiniiiieieeceeeeeeeee e 91
aVu =\ AT N el ho T ot o o) ol v T 1Yo)) TSP 92
Array Multiplication and Reduction (gabor_v6.Chpl).......cccuieeiieiiiiiiiicieecieecie ettt e e 92
PETTOITIIANCE. ... ettt ettt ettt et e et et e st e st e s se e s e easeenseensesssenseesseenseesseesnseesnnseesnnseenns 93

R =1 0 L] T USSR 94
EXOICISES. ...ttt ettt ettt e st e s bt e e s bb e e s a e s b e e e s bt e s e ra e e s s bt e e s naaeesnreeeeanas 94
FILBS. ettt ettt ettt et h e bt et e b et e s a e e bt e bt e bt et e et e e h e e e bt e bt e bt e bt eateeabeeeeabaeena 95
PARALLEL PROGRAMMING (gabor_par, 1ab_limits)......c.cceeieriiiriiiiieiieeeieerte ettt e e 96
IIETOAUCHION. ...ttt ettt ettt e b e e bt e st e e s ab e e eat e e b e e e b te e bt e eabeeeabeesate e steebbeeeeeannsaaeesaans 96
Data Parallelism (1ab_IIMItS).....cccueereuiirrirrieirieerieesiessieesseesieeesteeeteesireesaseesatessaeessseessseesssassssesssssssaessssnsenes 96
Limits Found in Serial (1ab_limitS_SeT)........coctirriiiriiiirieiieiiieeiteeie sttt siee e sbe e s teeseinra e e s eaaeeee s 99
Parallelism with Local Updates (Iab_limitS_Parvl).......cccccecvuerirrieiiniieiieiieeiiiieseeieeeesieesseeeeeevreeeeeeeeeens 100
Parallelism with Per-Pixel Storage (lab_limitsS_Parv2)........ccccccueeeieerieiniieenreenreeseeeseessseesseeseesnneeeesenns 101
POITOIMANCE. ... ettt ettt ettt et s bt e s ae et e e et s st e s beesbe e b e e b e satesatesmeesbeeseeane 102
Task Parallelism (ZaDOTDanKk)........c.ciecuiiiiiiiiiiiiiiieete ettt sttt st et e e e s e abte e e s s beaeeeenans 102
Gabor Filter Bank (8aborbank).........ccueicuiiiiiiriiieieiciecsieerteesteseesteeeve e te e e e e ssne s saessraesbaessseesnsnaeesenns 105
748 Tel 110) 11/ i (o) TSP SRR 107
L =) 5 L] TSP PPPPPPPPPPPN 108
EXOICISES. ...ttt ettt ettt sttt ettt e st e e et e e et e s ea b e e e e et e e s bt e e e e be e e s n bt e e e nb e e e rateeeareeeeenreeesnaneennn 109
FILBS. ettt ettt st e h e h e bbbt et e e a e e s h e e bt e bt et e et e et e e he e e bt e bt et e e e abaeeeabe 109
K-MEANS CLUSTERING (KIMEAMS)....cccuttertieerieerieerieenieeniesseessseessseessessseessseesssessseesssesssssesssassssessssessssssseees 110
IIETOAUCHION. ...ttt ettt et et e bt e e bt e st e e et e e s ate e b ee e bt e e bt e e bt e eabeeeabeeeembeeeesenbeaeeeaans 110
ASTAE: CIUSTETITIZ. .. vveeeetreeiiieeeecieeeeiteeeeteeesteeeestteeeeteeesssaaesesseesasseeesasseesassseesasssassassseesssseesssssnnssssssseeees 110
Implementation (KIMEANS_V1).....ccueiiiirrieerieerieerieenteesieessttessieesteeetessseessseessseesseesssaessseesssessseesssesssseesssessnses 111
MoOAUIE: RANAOMN....ccuutiiiiiiiieiiterie ettt ettt e e e st e st s tessbeesbeesabeessteessteesseesnsaesssaessaeessnseneesnnnns 113
IMOAUIE: SOTL....eteeieetete ettt ettt e et e bt e bt et e b e et e s at e bt e bt et e e atesateeatenste st anbeeaseeateesneeean 114
Atomic Variables (KIMEANS_V2)......ccueecieirrieiiiienieeeeesieesreeeseseeessseeesseeessessssessssessssessssssssssssssssssassssssssssssssees 114
PETTOITIIANICE. ... eeieeiieeieeteee ettt te ettt et et e st e et e s st e st e te et e esteaneessseseessesnseensesnsenseenseenseensennsesssenseenssesns 116
L =) D L] T PSP PPPPPPPPPRt 119
EIXOICISES. ...tiiiiiieitie ettt ettt sttt e s bt e e st e s et e s b et e s bt e s et s aba e e e nae e e snaeesees 120
FILBS. ettt ettt st e h e bbbttt et e e a e e e h e bt e bt et e et e et e e bt e e bt e bt e bee e abeeeeabe 120
FAST CORNER DETECTOR (FAS)...veuveveeeeeeeeeeserereeeesessssesessesesessesesesessssesessasesessesessssesssssesessesessasesesesseseas 121

3 Chapel By Example - Image Processing

| Fa o a LR Tai i 1o) s U 121

W3 (o (S @) s 2 o B Tl =T o) -SSR 121
LEBTALOTS. . vvteeeeeeereteeeeeeitte et e eeetteeeeseeatteeeeseessraaeeesssaseaaesssasssaaeessansseaeessassssaaeessassseeeessessssnaeessenssseeessensnne 122
Custom Iterators (fast_v1, teSt_fast_V1).....cccvvieriieriiereieerieirieereeesee st e ereeseeesseeesseeesaaessaesssneesssssnseesssnnnns 124
Class methods this() and these() (eX_class.ChPL)......cccuiveieiriiiriienieinieeree st eeeereesreeeeseereeeesssareeeessens 124
FAST Corner Detector (fast_v1.chpl, test_fast v1.ChpPl)......ccceeviiieieeiiieieccee e 128
Corner Suppression (fast_v2, teSt_faSt_V2)......ccceciieereeriieiiieereeeseesireesreesreesreesseeesseessseesssssaesssssssneesesnnsens 130
Generic Classes and RECOTAS........uevrviiiriiiriieeiieeriterieesiesste st e ssieessteessteesaseesaseesssessseessaessaesssasssenessnnnns 130
GENETIC PTOCEAUIES......oouiiiiieiieeite ettt ettt st st e s be e sbe e sabeesate e ate e baesssaesnseesnseesnsaesnnnns 134
Implementation (fast_V2, teSt__fASt_V2)....cccieeiieiiieiiieereeeieeereesreesreeseesstaesseeessseesssaessseesssessssessseesssnennns 137

AL =) L] 1 OO OO OO O PO PSP PP PPPPPPPPPPPPPN 139

E X BICISES. ...vtteeiieeiitee e ettt e e ettt e e e ettt e e e s ettt e e e ses s taaeeeseansaaaeeseaassssaaeseasssssseeesessssaaaaessasnssaeeesensssnneesensnnn 140
LS. ettt ettt et e ettt e et ee e e et e e e e rt e e e e ttee e baee e ataeeartte e baaeeartaeeanreeearreeeantaeearreareaaaaaaaann 140
RANSAC FEATURE MATCHING (TQNSAC)....utteeteeereerreesrreesreeesseesseessessssesssesssssssssessssesssssssssssssssessssssssaessssns 141
IITOAUCTION. ¢+ttt ettt ettt ettt e e s bt e bt e bt et e et esat e e bt e bt e bt et e s abeeatesatesseebeeeeabaeeeaneeesanee 141
Aside: kd-Trees (KAtree, teSt_KAITEE)......cccciiieeeieeeeiieeecieesetteeeeteeesteessee e s teeessaeesesseeesnsaeessssessssnnsssseeees 141
(O10) 1] 14 1 T w0) 1 FO OO U P PP 142
SATCH. ..ttt ettt b et ettt et e bt e bt e bt et e et e e a e e s at e s bt e bt e be e bt e e eabaees 144
Implementation (Kdtree, teSt_KAITEE)........civeuiirrieiiiieiieeieeete ettt ste e st be e ee et e e see e sssreaaessnnns 145
Aside: Transforms and BeSt FilS.......c..ccceeiieeriieiiieeceesieecieesieesteesteessseeeseeesseesseessseesssessssssssesssseessssssseasens 147
Implementation (FanSAC_St, TANSAC_TS)....cuuieceeerreerrreesreesreeseessseesssesassessssessssesssseessessssassssessssessssesssesssesssnns 152
OPETALION. ..ceeuutteeeiteeeeiteeeett e e ettt e ettt e e ettt e esubeeesubeeesabeeessaseeesnteeasasasesaasaeessnsaeesasteessaseeesassaeessseesssasessssnsnnnnss 154
AP U ettt ettt ettt ettt ettt e ettt e st e e e s bt e e s abe e e s aba e e s st e e e e a bt e e e a bt e e e nba e e s nbeeeeaneaesearae e e annnrreeaees 161
LB ettt ettt ettt et e e e e et e et e et e e e e et e e e bt e et e et e e e bee e bte e bee e taeerte e nae e rteetee e beeerteeenrrraeeeennrees 161
PRACTICAL MATTERS. ..ottt ettt ete et e e teeseessatessteesteessseesssassseassseesssessssessssessssessssesssenessssssneessnnns 162
DIEDUGGINIEG. ..ttt ettt ettt st et e s a e e bt e s bt e s bt e et e e eab e e bt e e bt e e bee e bt eebee e e e nbbaeeeeaanas 162
Exceptions and SeGIaulls..........ccciiriiriiiriiiieieeeee ettt ettt et et et eente s e e eneeeeans 162
GENETALEA COUE. ... eeueieiieieieeteet ettt ettt ettt et e st e st e e bt et e et e st e s bt e bt e bt e bt et e satesaeebtenbeeeeaneeesabaeesane 162

TASKS. ¢ttt ettt et ettt b e bt ettt et e a e e e a e e s h e bt et e et e e a b e e ateea e e b e e bt et e et e st esbeenbeeeans 163

Bug SUDMiSSION and TSt CaSES.....cccccuveieeeieeeeiieeeeirteestteeeeieeeeereesaseesassseeessssessssseesassssesssssesssssseessseesanns 166
RESOUTCE USAGE......ueiiiieiieeiiitee ettt ettt e e ettt e e e sttt e e s s s bbttee e s s asbbtaeeessassbaaeeeessassaaaessssssssesasaseeeees 169
LIOOSE EINDS.uttieitiitteite ettt esit e st e st estessitessttessseesbaesbaesaseesssaesssesssesssaesnseesnsaesssaesnseesnseesssesssnessseesssaeessnnns 171
SUMEUP...c ettt ettt ettt e s bt e st e e st e e sat e e stessbeesabaesasaesaseessse e stesnseesabaesasaesaseesaseanssesssaesnseessnnsaeeens 173
B XPETIEIICE. ..ttt ettt ettt ettt e e e ettt e e e s ettt e e e s e aabteeesesasbaaaesesassbtaaeeesanssbaaeeessnnseaaeessnnsnsnnnnannnnns 174
POITOITIIAIICE.ccvveeteecieeeieeeteeete ettt estt e e te e e teesbeeesbeeesea e seessseeesseeessaeassaessseassessseessseesssesassessssesssseesssesnseennsns 175
WOTK I PIOZIOSS. ..ceuviieieieitetteete ettt ettt et e et s et et e e bt e s bt e st e e st e e s abeeeateasteesstesabaesabaesabeesusbaeessnssaaeesnans 175
(@173) =1 | @) s Lad 111530 o TSP UUPUPR 176
YTl [T ol PP RRPR 176

4 Chapel By Example - Image Processing

INTRODUCTION

A few weeks ago (in April 2015) we found a post on the web that, in the middle and almost as an aside, praised
several lesser-known languages that were trying to tackle parallel computing. Always alert to random strong
recommendations from strangers signaling something interesting, we looked at each. One of these languages
was Chapel, developed by a team at Cray based on their experience with high-performance computing. We read
some of the presentations on the Chapel home page and saw several things that were intriguing. A scan of the
language specification reinforced the feeling, and we decided to dive deeper.

The language's goal is to cleanly express any type of parallelism in a program and map it to machine
configurations ranging from multi-core to multi-system. It wants to avoid low-level constructs, such as threads
or the MPI or OpenMP architectures, for all users without dictating how to achieve parallelism, as previous
languages had done. To quote their literature, "Chapel was designed with concepts that support data parallelism,
cooperative task parallelism, and synchronization-based concurrent programming." The language focuses on
high-level abstractions so that they are independent of the detailed execution, while still offering the opportunity
for low-level control. You can manually partition data into chunks and distribute it over the machines, or you
can treat the data as one piece and let the language do the work for you. All this is wrapped in features borrowed
from modern programming languages to make a comfortable programming environment.

It sounds good. Of course here we focus mainly on image processing on multi-core CPUs and GPUs, not on big
hardware. The issues faced there are outside our experience. The white papers, tutorials, and documentation,
however, hinted that there might be a good overlap between this problem domain and some of the basic features
of the language — array support, domains, built-in parallel loops. To learn the language, we decided to
implement several image processing programs in it and see how they developed. Part of our motivation is the
love of learning, part is answering the practical question "is this something we can use?" As we developed these
programs, chosen to increase in complexity from per-pixel operations to local neighborhoods to iterative
algorithms, we would document the language and how it applies to this problem domain. This is the result.

The outcome isn't certain. We might find there's not a good fit. We aren't trying to sell the language, to convince
you Chapel is the next great thing — and why aren't you using it already? Let the language designers and Cray
(or whoever has control of the project) do that. We believe that the strong, interesting features of any language
will become clear as you read about them. They'll prick your interest, get a nod of approval. If this happens
often enough, then you too might decide to investigate further, and then hopefully this document will help you
get started. We'll keep our opinions to ourselves until we get to the end.

This isn't a start-at-the-beginning kind of guide. We assume you know how to program and have some
experience with C (as the first chapter will show). We will cover the basics of the language, from types to data
structures to operators to statements, but our focus is more on the aspects that differ from our expectations than
on basic programming techniques, and the code snippets will either focus on the layout of the commands or how
their behavior differs. We'll generally build up the program for each chapter in pieces, adding more features and
using more of the language as we go along. We design on Linux boxes and the development flow for compiling
and running executables is based on that. The tool chain that you need to build the Chapel compiler —
specifically gcc and make — is all you'll need for these programs. You will need the PNG library and header file;
if not provided with your distribution, look at http://www.libpng.org.

The Chapel home page is at https://chapel-lang.org. You'll find documentation there — tutorials, presentations,
and the language spec — as well as a download for the compiler source. One you have that, we can start. The
examples and text are up-to-date for the latest (April 2018) release.

The home page for this project is at http://www.primordand.com/chapel by_ex.html. You can find downloads
for all program files and on-line and PDF copies of this text there.

5 INTRODUCTION Chapel By Example - Image Processing

http://www.primordand.com/chapel_by_ex.html
https://chapel-lang.org/
http://www.libpng.org/

The Chapel 1.18 release made deep changes to classes, including adding lifetime
specifications and replacing constructors by initializers. This breaks the method
we used to access image data stored in C and used by external libraries. The
example programs with the text will not work with this version or later.

6 INTRODUCTION Chapel By Example - Image Processing

AN EXAMPLE

"Hey, we found a programming language that looks interesting so here's a long description of how to use it"
might not be the most compelling motivation for spending time learning about Chapel. Here's an example that
shows many of the core ideas behind the language in action.

A kd-tree is an efficient way to search a k-dimensional space. It is essentially a binary tree which cycles through
the coordinates level by level, so that the root node splits the space along x, the second level by y, the third again
by x (for a 2-dimensional space) or z, the fourth by y (2D) or x (3D) or the fourth coordinate, and so on. The
goal of the example is to divide the space with a set of ordered points, building a balanced tree. We'll use a flat
array with 1-based indexing to store it, so the left child of the parent p is at 2*p and the right at 2*p + 1. The
algorithm will run in parallel as it recursively builds the tree layer by layer.

(19

(37).

0(8’6)

(65)

(2’4)0
(7’3)0
\42) J82)

(8.2)
kd-tree with point and base coordinate in node

Plane division for sample kd-tree

param ndim = 3;
config const treedepth = 5;

var Ltree : domain(rank=1l) = { 1..(2**treedepth)-1 };
var tree : [Ltree] ndim * int;
var data : [Ltree] ndim * int;

/* cbase is the coordinate 1l..ndim which is the primary sort key for
this level. p is the node in the tree to assign in this pass. */

proc assemble_tree(ref points : [] ndim * int, ref tree : [] ndim * int,
cbase : int =1, p : int = 1) {
const cnext = if (cbase == ndim) then 1 else (cbase + 1);

const medpos = partition_median (points, cbase);

tree (p) = points (medpos);

cobegin {
assemble_tree (points[..medpos-1], tree, cnext, 2*p);
assemble_tree (points[medpos+l..], tree, cnext, 2*p+l);

7 AN EXAMPLE Chapel By Example - Image Processing

assemble_tree (data, tree);
Let's look at this piece by piece.

param ndim = 3;
config const treedepth = 5;

These two lines define two constants which are type-inferred to be integers. The param keyword means ndim is
a compile-time constant. A const is a constant set at runtime and config means the compiler will automatically
create a command-line option --treedepth that allows you to change the value each time you run the program.
You do not have to parse the command line to get this behavior.

var Ltree : domain(rank=1l)

Arrays are a primary data structure in Chapel. They are backed by domains which define the indices. Domains
can be a series of values, as we'll use here, or discrete, like a set of hash keys or sparse indices. The var means
we can change the value of the domain; any array that uses it will automatically re-size. The colon is followed
by a type declaration which says that L.t ree is a domain. The rank of the domain is the number of dimensions,
so here we're saying Tt ree is a linear set of indices.

= { 1..(2**treedepth)-1 };

Domains are built on top of ranges of values which define the continuous set of indices. You can think of ranges
as the bounds of a for loop, and they can have an increment between values as well as a direction. The ..
notation indicates this is a range from 1 to the number of nodes in the tree (inclusive), which is one less than the
power of two of its depth (ie. a tree of depth 3 has 7 nodes, 4 has 15). The ranges are placed inside braces when
setting the domain. The assignment is done when Lt ree is declared so this is an initialization of the variable but
all variables have default initial values if not provided.

var tree : [Ltree] ndim * int;
var data : [Ltree] ndim * int;

This defines two arrays. [Ltree] indicates they are arrays over the Ltree domain. The elements of the array
will have type ndim * int which represents an ndim-element tuple of integers. With ndim=3 our points will
look like (x, y, z). The data array will hold the unsorted points, t ree the sorted. A kd-tree cannot be modified
easily once built, so the points will need to be copied into data before calling assemble_tree ().

proc assemble_tree() { .. }
This is a function declaration where
ref points : [] ndim * int,
is the first argument, an array of ndim-dimensional point tuples. We don't have to specify the domain in the
declaration and can get it later with points.domain. ref is an argument intent and says that the array is
passed by reference. This means that we will be able to change the contents inside the procedure and the value

in the caller will also change. Other intents include in for pass-by-value (where the value in the caller does not
change) and out which copies the value assigned within the procedure to the argument in the caller.

ref tree : [] ndim * int,

8 AN EXAMPLE Chapel By Example - Image Processing

is also an array of ndim-dimensional tuples. Because we haven't specified a size between the brackets for either
array, they may be different, although Chapel has a way to require that they be the same.

cbase : int = 1,

defines an integer argument. The default intent for primitive types is const in which means the argument's
value cannot be changed within the procedure (but in alone would allow this). cbase is assigned a default
value of 1 in case it is omitted when calling the procedure. You can also specify arguments by name when
calling.

p : int = 1) {

p is the root node of the tree and should have the value of 1 on the first call. We also provide a default so we can
omit the argument and get the correct behavior. Such arguments must come at the end of the list if you want to
mix them with arguments without defaults.

assemble_tree () has no return type, which would be placed between the closing parenthesis and opening
brace.

const cnext = if (cbase == ndim) then 1 else (cbase + 1);

This determines the coordinate used for sorting the next pass. The i f..then. .else construction is Chapel's
ternary expression and we use it to cycle the coordinates through the dimensions of the space. The const intent
means we cannot change the variable within the function after initialization. The type of cbase, int, comes
from the expression.

const medpos = partition_median (points, cbase);

Here we call another function, partition_median (), to find the median point of the points array. It works
like the partition function used in QuickSort: the elements of the points array are re-ordered so that those smaller
than the median lie to the left of it, those larger to the right, and the position of the median is returned and set to
the constant medpos. Note we haven't provided an implementation of this function in this example. A simple
but very inefficient approach would be to sort the points array using the cbase'th element of the tuple, and then
to return the index of the array's middle.

tree (p) = points (medpos);
This copies the median point into the tree. Chapel uses parentheses for array indexing.
cobegin { .. }

Chapel has four statements for parallel execution. cobegin says to run each of the statements in its block in a
separate task. There is also begin which runs statements asynchronously, forall which can split a range into
many subranges and run each in a task, and coforall which must execute each iteration of the loop in a
separate task. You can think of the first two as being oriented to do tasks (statements) in parallel, while the other
two process data (indices) simultaneously. With the cobegin we will run the two recursions in parallel; we
don't need any other code else to get this behavior.

assemble_tree (points[..medpos-1], tree, cnext, 2*p);
assemble_tree (points[medpos+l..], tree, cnext, 2*p+l);

These two recursions operate on the points that are smaller and bigger than the median. The smaller points go in
the left child at 2*p, and we take the first half-array of the points by slicing with the open-ended range

9 AN EXAMPLE Chapel By Example - Image Processing

. .medpos—1. This slice takes the intersection of the array's range with one that has no beginning. It ends just
before the median. The result is a new range that starts with the first point and goes to medpos-1, inclusive. On
the other side we need to build the tree at the right child 2*p+1 over the subrange medpos+1. ., where the new
range will start after the median and go to the last point. Because the children don't overlap we don't have to
worry about changing the array in independent tasks.

assemble_tree(data, tree);

The procedure call starts the process. As we said, we can leave out the cbase and p arguments because they
have defaults. Chapel has well-defined rules for resolving a mixture of positional, keyword, and default
arguments.

The core of this algorithm — partitioning and recurring on separate subranges of the input — is the same used for
QuickSort. You'll find a full implementation of a kd-tree using a different approach in the RANSAC chapter.

A bullet-list of additional language features that aren't in the example includes

— Language support for defining parallel tasks which the runtime will automatically create and run for the
hardware available, as well as offering control over how the mapping to hardware will be done.

— Synchronized and atomic variables.

— Generic types and data structures and polymorphic functions, where the specific versions are generated
at compile time and not by dynamic routing.

— Object-oriented data structures, with classes and records that combine data and functions and
inheritance.

— Modules to further partition programs into separate libraries.

10 AN EXAMPLE Chapel By Example - Image Processing

OVERVIEW

The programs we'll be writing were chosen to build in complexity through the tutorial.

11

1.

First we need to read images. We'll use the PNG library, which requires binding to some C code to
handle the interface. We'll need to cover types, variable and function declarations, and two structural
types, classes and records. We'll see how Chapel organizes programs into modules.

Next we'll do color conversion to transform our RGB input into another color space, the CIE L*A*B*,
where the L plane is a good greyscale version of the image. This is a pixel-by-pixel operation and will
introduce us to arrays, domains, and ranges. We'll cover the standard language — expressions and
statements. Then we'll extend this to other color spaces and introduce Chapel's support for first-class
functions.

For the third example we'll write a Gabor filter, which is a large convolution run over an image to detect
oriented edges. We'll learn about subdomains and subranges to iterate over the the convolution kernel,
and the syntactic support Chapel offers for defining them. We'll see reductions that combine multiple
results into one.

The fourth example introduces us to Chapel's support for parallelism, either at a task (statement) level or
by dividing a data set and working independently on each part. For the first we'll make a bank of Gabor
filters to evaluate at the same time, and for the second we'll split the RGB space to verify the bounds of
the LAB color correction. The language features we'll study are the statements that generate parallel
tasks, and synchronization variables.

Our next example is k-means clustering which we'll use to quantize (reduce) the number of colors in an
image. This uses an iterative refining of how pixels are assigned to clusters, which can, and will, be
done in parallel. We'll talk about Chapel's support for atomic variables.

Leading up to our final program we'll need to implement a FAST corner detector to mark features in
images we want to compare. The detector looks around a small ring to see if the center is the tip of a
light or dark corner. We'll write a custom loop iterator to step around the ring, and we'll study Chapel's
generic data structures and procedures in order to store a list of the corners found.

Finally, we'll use the corner detector to align two images, compensating for rotation, scaling, and
translation. This technique uses a random sample of points to determine the alignment, running many
trials in parallel to find the best correspondence. There won't be any new language features. We
ourselves haven't done this before and the goal of the exercise is to see what developing new image
processing code is like in Chapel.

OVERVIEW Chapel By Example - Image Processing

INSTALL

Once you have downloaded the distribution from http://chapel.cray.com and untarred it, you'll find a README
with instructions for compiling.

There is a simple version that does not use many third-party libraries (which are provided with the distribution).
To compile it you need to source a script in your shell and then run make. We run bash, so the commands run
from the top-level directory CHPL._HOME are

source util/quickstart/setchplenv.bash
make
make check

The last step runs built-in tests to make sure everything is correct.
The full version uses a different script.

source util/setchplenv.bash
make
make check

This version of the script sets several environment variables to add in extra features. (Well, technically it does
not set several variables, and their default values cause the extra features to be compiled in.) You'll find a full
list in CHPL_HOME/doc/rst/usingchapel/chplenv.rst (HTML versions also exist). The most important are:

variable purpose quickstart full
CHPL_TASKS threading library to use fifo (pthread) gthreads
CHPL_HWLOC package to detect hardware setup none hwloc
CHPL_COMM inter-processor communication package none - local CPU only
CHPL_GMP GNU Multi-Precision library no integrated
CHPL_REGEXP regular expression library no integrated
CHPL_LLVM use LLVM compiler, can embed C directly no integrated

You can set these manually before compiling if you want to force the behavior. Be aware that LLVM support
takes a long time to compile and you might want to pass -j # to make to do it in parallel.

Before using Chapel you will need to source the setchplenv script from CHPL_HOME once after login. You can
then run the compiler anywhere. We set the following variables instead in our .bashrc

export CHPL_HOME=<where you unpacked the distribution>

export CHPL_HOST_PLATFORM=""S$CHPL_HOME"/util/chplenv/chpl_platformpy"
export PATH="$CHPL_HOME"/bin/"$CHPL_HOST PLATFORM":"$CHPL_HOME"/util:$PATH
export MANPATH='"$CHPL_HOME"/man: $MANPATH

You will also need to set the other CHPL_* variables you forced before building the compiler.
Inside the distribution you'll find these important directories and files:

doc/rst/language/chapelLanguageSpec.pdf - complete description of the language

12 INSTALL Chapel By Example - Image Processing

http://chapel.cray.com/

doc/rst/technotes - descriptions of features being added to language (Work In Progress)
doc/html/index.html - browser version of the documentation, including modules

examples/primers - code examples for language features

examples/programs - complete, simple programs

examples/spec - code snippets from the spec

examples/benchmarks - various performance benchmarks

modules/standard - standard libraries , including 10, math functions, timers, and error handling
modules/internal - parts of the language that are written in Chapel

modules/packages - other libraries

third-party - support programs from outside the Chapel team used to build the compiler and runtime

There's a style definition for emacs and vim in highlight/[emacs|vim].

Compiling and Running a Chapel Program
The distribution contains many example code snippets and programs. Let's pick one to see the basic compile and
run cycle. Copy mandelbrot.chpl from CHPL_HOME/examples/benchmarks/shootout to a project directory.
Then do

chpl -o mandelbrot mandelbrot.chpl
to compile. To generate an n X n image type

./mandelbrot --n=16000 > img.out

This creates a 16000x16000 image in PBM format with the result. The —-n is a run-time constant that Chapel
allows to be set on the command line.

Mandelbrot set

Typing —-h or ——help the program name prints a table with all the command-line options that are available.

Typical for a compiler, there are pages of options for the chpl command line. See the man page. We will need
only a few, though, which we'll cover as we go along.

13 INSTALL Chapel By Example - Image Processing

IMAGE INTERFACE (png)

Introduction

Image processing means working with images, which means we need a way to read them into our programs and
write out the results. Our first task is to figure out how to interface with C libraries, namely libpng, which can
read and write images in the PNG format.

The Chapel compiler translates source files into C, which are then compiled normally. This means
interoperability is good. You can explicitly declare structures or functions or variables in Chapel and the
compiler will link them appropriately. If the compiler is built with LLVM support then Chapel can parse header
files or embedded code blocks and automatically set up the linkage. We'll assume this isn't the case, and our job
will be getting the type mappings correct.

We'll begin by writing and testing a simple C program that uses libpng, and then duplicate it in Chapel using a
small set of functions. We'll follow this by tying the C data structure to Chapel to access the image directly, and
we'll conclude this exercise by looking at how Chapel organizes code into modules and programs.

The directory for this chapter is png. Programs can be built by doing make name, where the name is without
the file suffix (.c or .chpl). We'll also give the full compiler command in the text if you want to do it directly.
Executables are put in the bin sub-directory. build holds auto-generated dependency lists and intermediate
object files. The sample image for this exercise is bear.png.

The files and image for this chapter are found here (as zip file). A PDF copy of this text is here.

C Library (img_png_vl.c, test_png.c)

img_png is a C file that provides functions to read and write PNG images and a data structure that holds the
image size and separate arrays for the R, G, and B planes. This data structure, called rgbimage, is dynamically
allocated and must be manually freed. Functions take a pointer to an rgbimage pointer if they create or destroy
an image, or just an rbgimage pointer if they work on it. Make sure the initial value for the pointer is NULL or
else the allocation routine will assume it already holds an image and will try to free it, which will raise a
segfault.

rgbimage *img = NULL;
read_ PNG (filename, &img);
free_rgbimage (&img) ;

img_png_v1 (the _v1 indicates we'll be modifying the code later, in this case to interface better with Chapel)
contains three groups of functions. The first provides PNG support: PNG_isa () tests if a file contains a PNG
image; PNG_read () creates a new image with the picture from disk; and PNG_write () writes a picture to a
file. The second group manages rgbimages: alloc_rgbimage () creates a black picture (ie. R, G, and B all
zero) of a given size; and free_rgbimage () releases the memory. Not calling free_rgbimage () is a
memory leak. The third group accesses pixels without the caller knowing about the rgbimage data structure:
read_rgb () getsthe R, G, and B values at a point; and write_rgb () changes them. This group is to get us
started, until we figure out how to directly access C arrays from Chapel.

The code should be straightforward. The PNG functions follow the guidelines in the library's documentation,
including set jmp () and longjmp () for error handling. The memory functions use calloc () and free (),
and the access functions are array operations. The color planes are stored row-by-row, packed into a 1D array,

14 IMAGE INTERFACE (png) Chapel By Example - Image Processing

pdf/chapel_by_ex_png.pdf
data/chapel_by_ex_png.zip
data/chapel_by_ex_png.tar.gz

where a point (x,y) in an image with ncol columns is located at index xy
Xy =y *¥ ncol + x;

test_png.c is a simple test program for these functions. It reads an image, prints out the R, G, and B values at a
pixel, then changes them to 1, 2, and 3 respectively before writing the result to a new file. Compile it with

gcc —c -o build/img_png vl.o img_png vl.c
gce -o bin/test_png test_png.c build/img png vl.o -lpng
or make test_png

which compiles first img_png_v1.c, putting the object file in the build sub-directory and then test_png.c, putting
the executable in bin. Run it with

bin/test_png bear.png tstimg.png 615 212

The point (615, 212) is the tip of the leaf below the bear's right ear. It has R 83 G 156 B 25, which you can
confirm in the program's output. If you open tstimg.png you can verify that the pixel has changedtoR 1 G2 B

detail of leaf tip

AL \

=

rigqinal ‘lrm;gebea}‘.png

changed pixel on leaf

C interface from Chapel (rw_png_v*.chpl)

The goal of this chapter is to duplicate the test_img.c program, but this time in Chapel. That is, we'll show how
we can read an image, access and manipulate it, and save the result. The program logic is trivial; the difficulty
will be interfacing to the C world. The concepts we'll need to understand are variable definitions and the Chapel
basic types, procedure declarations to mirror the functions in the C library, and what Chapel requires to link to

15 IMAGE INTERFACE (png) Chapel By Example - Image Processing

external code, both in the source file and when compiling.

Primitive Types

Chapel has a small list of primitive types: int and uint (unsigned); real, complex and imag(inary); bool(ean); and
void. Types can be given a size in bits. Currently supported are

8 16 32 64 128 bits

int X X X D

uint X X X D

real ? ?D

imag ? D

complex ? D

bool X X X X (default varies)

? means potentially supported depending on the hardware, D is the default bit depth, and x an otherwise allowed
bit depth. Sizes are written in parentheses after the type

int (32)

Use 0x[0-9A-Fa-f]+ to represent a hexadecimal number, 0o[0-7] for an octal, and 0b[01] for a binary. The x, o,
and b can be capitalized, but anybody who uses 00 is evil and deserves the everlasting pain they will suffer.

An imaginary number is followed by i. The format of complex numbers is 'a + bi' or (a, b), a tuple. The real part
of a complex variable c is gotten with c. re, the imaginary with c.im. You can use these components on the
left side of an assignment.

c=-1.0 + 1.01i;
writeln("real part " + c.re + " img part " + c.im);
> real part -1.0 img part 1.0

c.re = 2.0;
writeln("real part " + c.re + " img part " + c.im);
> real part 2.0 img part 1.0

The boolean values are t rue and false. In conditional expressions for i f, while, and do-while an integer is
treated as false if 0 and t rue if non-zero, and a class as false if nil, true if not.

Strings are a class and not a primitive type. They're implemented as an array of characters and a variable with
the length. They only support ASCII and may have restrictions on copies on remote machines.

Void is only used as an empty argument list or return type.

Variable Declarations

Chapel has three ways to declare a variable: either a type is provided and there is a default initialization value, or
an initialization value is provided and the type is inferred from it, or both are given. So

var a : int (32); /* default to 0 */

16 IMAGE INTERFACE (png) Chapel By Example - Image Processing

var a = 1234; /* int (64) */
var a : int(32) = 1234; /* int (32) */

The kind of the variable must precede the name. There are three. var is a normal variable, param a compile-
time constant, and const a runtime constant. A parameter can be initialized with a primitive value, an
enumerated type, or a simple expression using the normal math and comparison operators. Several of the
functions in the Math standard module, including abs () and mod (), are also available if they are declared with
a param intent. A constant can be of any type, but must be initialized and keeps that value for its lifetime.

Numbers default to 0, booleans to false, and strings to the empty string. Classes default to ni1.

A variable name is any alphanumeric character, the underscore, or dollar sign. It must begin with a letter or
underscore.

Multiple variables can be combined in a comma-separated list with types and initializations shared.

var a, b=-1, ¢, d=1, e: uint(8), f: string;

creates five 8-bit unsigned integers (a-e) and one string. a and b are set to -1, c and d to 1, and e and £ get their

default, 0 and “”.

There are two optional modifiers to the kind of variable. One is extern, and we'll get to it soon. The other is
config. This creates a configuration variable/parameter/constant that can be initialized from the command line.
For example, from the Mandelbrot benchmark program (in
CHPL_HOME/examples/benchmarks/shootout/mandelbrot.chapel)

config const n = 200, // the problem size
maxIter = 50, // the maximum # of iterations
limit = 4.0, // the limit before quitting
chunkSize = 1; // the chunk size of the dynamic iterator

The Chapel compiler will automatically add command line arguments to change these values. You can either
pass ——<cfgvar>=<val>, Or —s<cfgvar>=<val> (without a space after the s). If the value is a string with
spaces, you must wrap it in quotes.

Try this. The four lines of code are placed in a file and compiled, then the program is run.

config param cfgparam : int = 1;

config const cfgconst : int = 2;

config const cfgvar : real = 2.178;

writeln("cfgparam = ", cfgparam, " cfgconst = ", cfgconst,
" cfgvar = ", cfgvar);

chpl -o ex config ex_config.chpl
. /ex_config

> cfgparam = 1 cfgconst 2 cfgvar = 2.178

./ex_config ——-cfgvar=3
> cfgparam = 1 cfgconst = 2 cfgvar = 3.0

./ex_config -scfgvar=3 --cfgconst=1

I
w
o

> cfgparam = 1 cfgconst =1 cfgvar

17 IMAGE INTERFACE (png) Chapel By Example - Image Processing

The value on the command line must be valid for the type of the variable/constant.

./ex_config ——cfgvar=3 —--cfgconst=1.7

> <command line setting of 'cfgconst'>: error: Unexpected character when

con

verting from string to int(64): '.'

./ex_config ——cfgvar=true

> <command line setting of 'cfgvar'>: error: Unexpected character when

con

verting from string to real(64): 't'

To set a parameter during compilation you must use the —s form. Parameters cannot be changed from the
command line during execution.

./ex_config ——cfgvar=3 —--cfgconst=1 --cfgparam=2

> <command-line arg>:3: error: Unexpected flag: "—--cfgparam=2"
chpl —--cfgparam=9 -o ex_config2 ex_ config.chpl

> Unrecognized flag: '—-cfgparam=9' (use '—-h' for help)

chpl -scfgparam=9 -o ex_config2 ex_ config.chpl

. /ex_config2

> cfgparam = 9 cfgconst = 2 cfgvar = 2.178

—-h or ——help print a table listing all the options that are available.

>

VvV V V V V V V V V V V V V VYV V.YV

\%

vV V VvV V

18

./ex_config2 -h

FLAGS:
-h, —--help : print this message
—-a, ——about : print compilation information
-nl <n> : run program using n locales
(equivalent to setting the numlocales config const)
—-q, ——-quiet : run program in quiet mode
-v, ——-verbose : run program in verbose mode
-b, —--blockreport : report location of blocked threads on SIGINT
-t, —--taskreport : report list of pending and executing tasks on SIGINT
——gdb run program in gdb
—-E<envVar>=<val> : set the value of an environment variable
CONFIG VAR FLAGS:
-s, ——-<cfgVar>=<val> : set the value of a config var
—f<filename> : read in a file of config var assignments
CONFIG VARS:
Built-in config vars:
printModuleInitOrder: bool
dataParTasksPerlLocale: int (64)
dataParIgnoreRunningTasks: bool
IMAGE INTERFACE (png) Chapel By Example - Image Processing

vV VV V V V V V V V V V VYV

This example is in ex_config.chpl. Compile and run it with

config config vars:

dataParMinGranularity:
memTrack:

memStats:

memLeaks:
memLeaksTable:

memMax :
memThreshold:
memLog:
memLeaksLog:
numLocales:

cfgconst:
cfgvar:

int (64)
bool
bool
bool
bool
uint (64)
uint (64)
c_string
c_string
int (64)

int (64)
real (64)

chpl -o bin/ex_config ex_config.chpl

or make ex_ config

bin/ex_config

There is one quirk of the initialization of config variables if we put more than one on the same line.
Initialization proceeds from left to right along the list, with the variable getting the value of the previous. It
seems to go the other way, but the type and default value move to the first free variable in the list and are then
copied to the right. If we provide a value for only one from the command line, then all others to its right will
also get that value. In this example setting x also changes y, but y does not change x. z, listed on a separate line

in the source, only changes when listed on the command line.

config const x,
config const z
writeln("x = ",

./ex_init

>x = -1 y =

./ex_init --x=3
> x =3 y =

./ex_init --y=3
>x = -1 y =

./ex_init --z=3
>x = -1 y = -1

X,

_1,-

y = -1;
" y =
z = -1
z = -1
z = -1
z =3

In short, config variables with initialization conditions should be put on separate lines. You'll find the example

in ex_init.chpl. Compile and run it with

chpl -o bin/ex_init ex_init.chpl

or make ex init

bin/ex_init

19 IMAGE INTERFACE (png)

Chapel By Example - Image Processing

Function Prototypes

One more piece we'll need for this exercise is how to declare the C-side functions for Chapel. A Chapel function
declaration looks like:

proc fnname (argl : typel, arg2 : type2) : returntype
and has a number of options for defining and using it..
1. You can call procedures with the arguments named:

proc tstfnl(argl : int, arg2 : real) {
writeln("tstfnl: argl =", x, " arg2 = ", y);

}

tstfnl (arg2=3, argl=l);

> tstfnl: argl =1 arg2 = 3

2. You can provide default values for the arguments:

proc tstfn2(argl : real = 2.718, arg2 : string = "dummy string") ({
writeln("tstfn2: argl =", x, " arg2 =", y);

}

tstfn2();

> tstfn2: argl = 2.718 arg2 = "dummy string"

tstfn2(3.14);
> tstfn2: argl = 3.14 arg2 = "dummy string"

tstfn2 (arg2="a new string")
> tstfn2: argl = 2.718 arg2 = "a new string"

tstfn2 (argl=1.41, "another string");
> tstfn2: argl = 1.41 arg2 = "another string"

tstfn2 ("another string", argl=1l.41);
> tstfn2: argl = 1.41 arg2 = "another string"

In the first output line we see the default values for both arguments. In the second we call by position, which
means supplying a value for argl and using the default for arg2. To use the default for argl we need to name
arg2 in the third call. The last two uses show that it's possible to swap the order of a named and positional
argument with Chapel evaluating the named argument as if it were passed at its position in the argument list.
argl in the last call pushes the unnamed argument to the second position, which aligns with arg2.

3. You can omit the parentheses if there are no arguments to the procedure, or just put the parentheses with
nothing between them. You must call the procedure with or without parentheses as it was defined.

proc tstfn3a { writeln("tstfn3a: no args"); }
proc tstfn3b() { writeln("tstfn3b: no args"); }

tstfn3a; /* tstfn3a() is illegal */
> tstfn3a: no args

20 IMAGE INTERFACE (png) Chapel By Example - Image Processing

tstfn3b(); /* tstfn3b is illegal */
> tstfn3b: no args

4. An argument can be qualified by an "intent" which governs how the argument is passed to/from the procedure.

21

An in argument receives a copy of the value from the caller. Any changes within the procedure are kept
local.

An out argument means the value on call is ignored, but that the caller's value is changed when the
procedure returns. The variable will initialize to its default value. It may be referred to within the
procedure.

An inout argument gets a copy of the value in the caller when the procedure is called, and the caller's
value is changed on return.

A ref intent means the argument is passed by reference. Any access is done at the caller's site. Unlike
an inout argument, no copying is done during the call or return, which means this may not be safe
when changes happen in parallel.

A const in intent means the argument receives a copy of the value from the caller and that the
argument may not be changed locally.

A const ref intent is like a ref, but there may be no changes made locally. If one procedure is
working on a const ref argument and another on just a ref, then changes made by the second may
still be seen by the first if the two are run concurrently.

proc tstfnd4 (in argl : int, out arg2 : real, inout arg3 : int,
ref argd4d : real, const in arg5 : int,
const ref arg6 : real) {

argl = argl - 1;
arg2 = argl + 1; /* ie. the original value of argl, the -1 +1 cancel. */
arg3 = arg3 + arg5 - 2;

arg4 = arg6 + 1;

/* Either of these two would cause a compilation error.
arg5
argé6

*/

argl - 1;

2 * arg2;

}

var calll = 3;

var call2 = 1.618;
var call3 = 7;

var calld4d = 29.98e-9;
var call5 = 5;

var callé = 9.807;

tstfn4 (calll, call2, call3, call4, call5, calls);

writeln("tstfn4: calll =", calll, " call2 = ", call2, " call3 = ",
call3);

writeln (call4d = ", call4, " call5 = ", calls5, " calleé '

IMAGE INTERFACE (png) Chapel By Example - Image Processing

callsé);
> tstfn4: argl

3 arg2 = 3.0 arg3 = 10
10.807 arg5 = 5 argé = 9.807

> arg4

It would be a compilation error if you tried to pass a const value to an out, inout, or ref argument
(const ref is OK).

/* These are compilation errors.
const call7 = 3.0;
const call8 = 3;
tstfn4 (calll, call7, call3, call4, call5, callsé);
tstfn4 (calll, call2, call8, call4, call5, callé);
tstfn4 (calll, call2, call3, call7, call5, callé);
*/

The default intent is const in except for synchronization variables and arrays, where it is ref.

5. To return a value from the procedure, use a return with an expression. If you specify a return type for the
procedure (as in our introductory example), all return statements must produce either a value of that type or one
that can be implicitly cast to it. If you do not specify a type, then all return statements are examined. There must
be an implicit cast of all of them to one type, which becomes the return type of the procedure. If there is no
return, the type is void. (So the procedures in the examples above all return void.)

proc tstfn5(argl : int) {
if (argl < 5) {

return 5; /* an int */
} else if (argl < 10) {
return 6.0; /* a real */
} else {
return 1.0 + 1.0i; /* a complex number, the return type */

}

var ret5 = tstfn5(3);
writeln("tstfn5: real part ", ret5.re, " complex ", ret5.im);
> tstfn5: real part 5.0 complex part 0.0

ret5 = tstfn5(7);
writeln("tstfn5: real part ", ret5.re, " complex ", ret5.im);
> tstfn5: real part 6.0 complex part 0.0

ret5 = tstfn5(11);
writeln("tstfn5: real part ", retS5.re, " complex ", ret5.im);
> tstfn5: real part 1.0 complex part 1.0

Return types may also get intents. There are four. The ref intent means the procedure returns a reference to a
variable. When such a procedure call is placed on the left side of an equals sign, or used as an (in)out or ref
argument in another call, then the referred variable's value changes. When it is used on the right side, the
procedure returns the existing value of the variable. The param intent evaluates at compile time and must create
one of the simple expressions acceptable for a parameter. The type intent means the procedure will return a
type such as uint (8). This can be used for generic programming. The procedure will only be evaluated during

22 IMAGE INTERFACE (png) Chapel By Example - Image Processing

compilation. The throws intent signals the procedure can create an error/exception.

6. Procedures may be nested inside others, with the inner only visible within the outer's scope. Nested functions
may refer to variables in the outer procedure. Names in the inner procedure will shadow the outer.

proc tstfn6(argl : int) {
const vall = 3.14;
proc tstfnéb(argl : real) ({
writeln("tstfn6: argl =", argl, " vall = ", vall);

}
tstfnéb (argl + wvall);

}

tstfn6(3);
> tstfn6: argl = 6.14 vall = 3.14

7. You can precede the proc with the keyword inline. The procedure will be inlined at every call site.

8. Procedures, including many operators, may be overloaded; the best match to the arguments in the caller will
be used. Operators keep their precedence and arity, the number of arguments they take. The language
specification contains a table with the list of operators that may be overloaded.

9. You can have a variable number of arguments, indicated with three dots. This, combined with generic
procedures and type arguments, allows a level of meta-programming which we'll look at shortly

You cannot combine variables with the same type in the declaration.
proc tstfn(argl, arg2 : int) { }
is not allowed, you have to put the type after each argument.
The code samples for this section are in ex_fn.chpl. Compile and run them with

chpl -o bin/ex fn.chpl
or make ex fn

bin/ex_£n

External Linkage (rw_png_v1.chpl)

Now the pieces are in place. The general outline of this first program will be:

define command-line arguments (file names, pixel coordinates)

define internal variables

define the C interface

read the PNG image, get the pixel value and print it, change it, and write the result back

To access things C-side, we need to declare them in the Chapel program and provide the C header and object
files when we compile. The declarations follow the variable and function formats we've already described. We

23 IMAGE INTERFACE (png) Chapel By Example - Image Processing

only need to put the extern keyword before them.
The five C prototypes we need are:

int PNG_read(const char *inname, rgbimage **img);

int PNG_write (const char *outname, rgbimage *img) ;

int read_rgb(rgbimage *img, int x, int y, uchar *r, uchar *g, uchar *b);
int write_rgb(rgbimage *img, int x, int y, uchar r, uchar g, uchar b);
void free_rgbimage (rgbimage **);

(where uchar is a typedef for unsigned char). Let's start with write_rgb () asit's the easiest.

If the C program uses the standard types that encode the bit size in their name (int32_t) then it's safe to use the
corresponding Chapel type int (32) directly. Otherwise the recommendation is to use the types
c_<typename> (c_int, c_uint, c_char, c_uchar) because there might be a size mismatch. These types are
aliases for the appropriate Chapel type and can be used freely in their place.

So, ignoring the pointer for a moment, the write_png () prototype becomes

extern proc write_rgb(???, x : c_int, y : c_int,
r : c_uchar, g : c_uchar, b : c_uchar) : c_int;

How about the image pointer? First we need to handle the type. If all we're doing is passing around a pointer
between C functions, without needing to access the data from Chapel, then we can define an empty type alias
that tells Chapel to only handle the pointer. The data structure behind the pointer is "opaque"”, and can only be
assigned to other opaque variables of the same type or used as an argument to a C function. That's all we need
for now, so the command for the type alias is

extern type rgbimage;

For the pointer, there are a couple ways to approach it. There is a type c_ptr (<type>), which can also be
constructed from a Chapel variable by calling c_ptrTo (<variable>), where it gets the type from the
variable. Or we can use a ref intent on the argument, which effectively means a pointer will be used. Since we
don't have a variable with the rgbimage, only a pointer to a blob of that type, we'll use the c_ptr () option.
The prototype becomes

extern proc write_rgb(img : c_ptr(rgbimage), x : c_int, y : c_int,
r : c_uchar, g : c_uchar, b : c_uchar) : c_int;

How to declare the PNG_write () function is now clear. Chapel defines the c_string type as an alias for
const char *, which is the first argument, and the same type of pointer as we just talked about for the second.
string and c_string do not have the same internal representation and cannot be substituted. We must convert the
Chapel value to a null-terminated array when we call the function. The prototype is

extern proc PNG_write(fname : c_string, img : c_ptr(rgbimage)) : c_int;

For read_rgb (), we know how to represent the first three arguments. What about the pointers to uchar for
the RGB triple, where we are returning the values to the variable? This does sound like we want the ref intent
for the pointer. First we'll need three variables to hold the values, and then declare the corresponding arguments
as refs.

var rpix, gpix, bpix : c_uchar;

24 IMAGE INTERFACE (png) Chapel By Example - Image Processing

extern proc read rgb(img : c_ptr(rgbimage), x : c_int, y : c_int,
ref r : c_uchar, ref g : c_uchar, ref b : c_uchar);

The final two prototypes require a double pointer to receive the pointer to the memory with the allocated image.
This must be set to NULL initially or the PNG functions will assume there's an image already there and will try to
free it. The equivalent to this in Chapel is to declare a pointer to the type as a variable and to pass that variable
as a ref argument, ie. a pointer to the variable which is a pointer. When we declare the variable we want to
initialize it to ni1. Only classes can be assigned ni1, which is also their default value; this is a placeholder until
the class is actually instantiated. In this next initialization, then, we're foreshadowing that c_pt r is implemented
as a class, as we'll soon see.

var rgb : c_ptr(rgbimage) = nil;
extern proc PNG_read(fname : c_string, ref img : c_ptr(rgbimage)) : c_int;
extern proc free_rgbimage (ref img : c_ptr(rgbimage)) : void;

This defines the five prototypes for the C interface, and four local variables that we need for arguments modified
by the functions.

Following the command line for test_png, we will want four options:

config const inname : string;
config const outname : string;
config const x, y : c_int;

config means we can supply the value on the command line (and must, because this version of the program will
crash if we don't provide them). We don't change the value so const is appropriate. We can use the c_int type
here because it is an alias for int (32) on our machines, but must use Chapel's strings. To convert to c_string
we use the c_str () method function, as in C++.

The last thing that's left is the logic: calling the five functions and printing the RGB values we've retrieved.

PNG_read (inname.c_str (), rgb);

read_rgb(rgb, x,y, rpix, gpix, bpix);

writef ("\nAt %4i, %4i R %3u G %3u B %3u\n", x,y, rpix,gpix,bpix);
write_rgb(rgb, x,y, 1, 2, 3);

PNG_write (outname.c_str(), rgb);

free_rgbimage (rgb) ;

The writef () statement is the equivalent of C's print £ () where i is the format code for an int and u a uint.
Note that we're ignoring the return value of the functions for now. If something goes wrong, it will go horribly
wrong. Try running the program without any command line options and you'll get a segmentation fault because
we ignore the error code that PNG_read () will return (inname is an empty string, so it can't read that file) and
when read_rgb () runs it crashes because the rgb variable is nil.

To compile the program we need in addition to the program (rw_png_v1.chpl) the header file for the C code
(img_png.h), the object file (build/img_png.o), and a link to the PNG library. Chapel parses the header file to set
up bindings to the C data and functions and the linker will add in our object file and the library. To compile and
run the program use

chpl -o bin/rw_png vl rw_png_vl.chpl img png vl.h build/img png vl.o -lpng
or make rw_png vl

25 IMAGE INTERFACE (png) Chapel By Example - Image Processing

bin/rw_png vl —-—-inname=bear.png —--outname=tstimg.png —--x=615 —--y=212
> At 615, 212 R 83 G 156 B 25

You can inspect tstimg.png, or compare it to the test_png output to see that it's the same.

Aside: Embedding C Requirements (rw_png_v1b.chpl)

In the October 2015 release Chapel added support for embedding C file requirements inside the Chapel source
file instead of on the compiler command line. The declaration in the source file is a comma-separated list of
strings following the require keyword that specify header, C source, and object files or libraries. Header files
are included, source files are compiled as Chapel normally would, and object files and libraries are linked. For
this program we can write

require "img _png v1.h", "build/img png vl.o", "-lpng";
which we used on the compiler command above. Compilation is then just

chpl -o bin/rw_png vlb rw_png vlb.chpl
or make rw_png_vlb

Whether you find it better to track dependencies in the source or make file is a question of style. We'll keep
listing them in the compilation command because we need to list the dependencies for the make target anyway.

Structural Types (rw_png_v2.chpl)

The rgbimage type in _v1 was opaque. Chapel has no idea what's in it and only passes a pointer around. Can
we gain access to the fields of the structure? To do that we'll need a structural type.

Chapel has three structural types: class, record, union. Classes and records are very similar, except classes are
handled by reference and records by value. We'll see the difference clearly when we modify img_png_v1.c and
rw_png_v1.chpl so we can directly access the members of the rgbimage struct. All three allow variables, types,
and procedures to be declared inside. Variables within these are called 'members' or 'fields' and procedures
'methods'. Using the terminology from object-oriented programming is deliberate, as classes and records also
support inheritance. These fields are accessed by dot notation, or instance.method (). (The language spec
describes a fourth type, tuples, as structural, but they have a different, simplified, layout, without methods or
named members. We'll use tuples in the next exercise.)

The examples for this section are in ex_struct.chpl. Compile and run it with

chpl -o bin/ex struct ex_struct.chpl
or make ex_struct.chpl

bin/ex_struct

Unions are the simplest of the three. They are declared with the union keyword, possibly preceded by extern,
followed by a name and then any declarations within braces.

union numbers {
var svar : int (16);
var ivar : int (32);
var lvar : int (64);
var rvar : real;

26 IMAGE INTERFACE (png) Chapel By Example - Image Processing

var cvar : complex;

}

Unions can only contain a value in one field at a time. Writing to another field will unset the first. As an
example, let's assume we have two variables of this union type:

var exunion, cpunion : numbers;

exunion.ivar = 1234;

writef ("assigned union int %i\n", exunion.ivar);
> assigned union int 1234

If we assign a union variable to another, then the active field's value is copied and that field is set active.

cpunion = exunion;
writef ("copy has int field %i\n", cpunion.ivar);
> copy has int field 1234

This copy has been made by value; there is no link between cpunion and exunion at this point. Changing the
active field in exunion will not affect cpunion.

exunion.cvar = 1.0 + 2.0i;

writef ("changed union to complex %z\n", exunion.cvar);
writef ("copied union still int %$i\n", cpunion.ivar);
> changed union to complex 1 + 2i

> copied union still int 1234

It is a runtime error to access a field that has not been set.

writef ("union now has no int %$i\n", exunion.ivar);
> ex_struct.chpl:36: error: halt reached - illegal union access

When a union is initialized no field is set. The variable declarations inside should not be given initialization
conditions. Although the compiler will not complain, you will not be able to access an initialized field (the
runtime will give an illegal union access error), as if the initialization does not set it active. You will still need to
assign something to one field before accessing it.

Records and classes are declared the same way, except for the keyword and the possibility of specifying a
superclass for a class. Records and classes differ in a few ways, the main ones being how they are initialized and
assigned. If we think of a class as a pointer to a structure, and a record as a structure, then we understand many
of the differences. A pointer can take the NULL value so variables of a class type can take nil while records
cannot. A class must be manually constructed and destroyed while storage for records is known and allocated
when the variable is declared and is reclaimed when it leaves scope. Class variables are assigned by copying a
pointer and so the left hand side refers to the right after the assignment, while records are copied by value and
are independent afterward.

Let's look at some examples to see these points.
A record implementation of the rgbimage struct in img_png.h might look like

record rgbimage_rcd {
var ncol : c_int;
var nrow : c_int;

27 IMAGE INTERFACE (png) Chapel By Example - Image Processing

var npix : c_int;

var r : c_ptr(c_uchar) = nil;
var g : c_ptr(c_uchar) = nil;
var b : c_ptr(c_uchar) = nil;

}

We're using the C types (see the previous section) to lay the groundwork for the new version of the rw_png
program we'll be making. For each element of the structure, Chapel automatically makes a single method with
the name of the member. It acts as both a getter and setter. Do you remember from the procedure discussion
that you can omit the parentheses after a procedure if it takes no argument, and that any call must also omit
them? That's essentially what's happening here. The method is given a ref return intent so that if it's placed on
the left side of an assignment statement the member is modified, and on the right it returns the value. In other
words, this record implictly includes

proc ncol : c_int ref { return ncol };
With one procedure we have both the getter and the setter.

When we declare a variable as an instance of this record, it is initialized member by member following the
normal rules, ie. if an initialization expression has not been provided, then the type's default value is used. We
can also assign a record to a variable or use it in an expression by using the keyword new before the record
name, which allows us to access its default constructor. The compiler automatically generates the constructor,
where the arguments are provided in the same order as the fields and given their names.

var exrcd = new rgbimage_rcd(ncol=300, nrow=400); /* default npix=0 */
var cprcd : rgbimage_rcd; /* default ncol=0, nrow=0, npix=0 */

To set a field, simply assign it a value.

cprced.npix = 100;

writef ("exrcd: %4i x %$4i (= %$6i npix) nil r? %s\n",
exrcd.ncol, exrcd.nrow, exrcd.npix, (nil == exrcd.r));
writef ("cprcd: %4i x %$4i (= %6i npix) nil r? %s\n",
cprcd.ncol, cprcd.nrow, cprcd.npix, (nil == cprecd.r));
> exred: 300 x 400 (= 0 pix) nil r? true
> cprecd: 0 x 0 (= 100 pix) nil r? true
The compiler will generate default =, ==, and != methods. Each is applied member by member with the usual

behavior. Because records copy by value, the assignee is kept separate from the assigner.

writef ("ex == cp? %s\n", (exrcd == cprcd));
> ex == cp? false

cprcd = exrcd;

writeln ("copy exrcd to cpred");

writef ("exrcd: %4i x %4i (= %6i npix) nil r? %s\n",
exrcd.ncol, exrcd.nrow, exrcd.npix, (nil == exrcd.r));

writef ("cprcd: %$4i x %$4i (= %6i npix) nil r? %s == exrcd? %s\n",
cprcd.ncol, cpred.nrow, cprcd.npix, (nil == cprecd.r),
(exrcd == cprcd));

> copy exrcd to cprcd

28 IMAGE INTERFACE (png) Chapel By Example - Image Processing

> exred: 300 x 400 (= 0 pix) nil r? true
> cprced: 300 x 400 (= 0 pix) nil r? true == exrcd? true

exrcd.ncol = 600;

exrcd.nrow = 800;

writeln("set exrcd ncol, nrow");

writef ("exrcd: %$4i x %$4i (= %6i npix) nil r? %s\n",
exrcd.ncol, exrcd.nrow, exrcd.npix, (nil == exrcd.r));

writef ("cpred: %$4i x %$4i (= %$6i npix) nil r? %s == exrcd? %s\n",
cprcd.ncol, cpred.nrow, cprcd.npix, (nil == cprcd.r),
(exrcd == cprcd));

> set exrcd ncol, nrow

> exred: 600 x 800 (= 0 pix) nil r? true

> cprcd: 300 x 400 (= 0 pix) nil r? true == exrcd? false

The fields in cprcd are overwritten during the assignment but are then independent of changes to exrcd.

Fields are only accessible through an instance of a record or class. Identifiers declared param will not be
visible.

Our class example will run the same with two differences. First, we can't simply declare a variable as a class and
have it appear; we must make an instance with the new keyword. The comments about constructors generated
by the compiler or the program still apply.

class rgbimage_cls {
var ncol : c_int;
var nrow : c_int;
var npix : c_int;

var r : c_ptr(c_uchar) = nil;
var g : c_ptr(c_uchar) = nil;
var b : c_ptr(c_uchar) = nil;
}
var excls : rgbimg cls;
writef ("excls nil post-declaration? %s\n", (nil == excls));

> excls nil post-declaration? true

excls = new rgbimg cls (200, npix=1000, ncol=5);

writef ("new excls: %$4i x %4i (= %6i npix) nil r? %s\n",

excls.ncol,excls.nrow, excls.npix, (nil == excls.r));
> new excls: 5 x 200 (= 1000 pix) nil r? true
excls.ncol = 10;

excls.npix = 2000;

writef ("excls changed: %4i x %4i (= %6i npix) nil r? %$s\n",
excls.ncol, excls.nrow, excls.npix, (nil == excls.r));
> excls changed: 10 x 200 (= 2000 pix) nil r? true

The example variable defaults to nil until we create a new instance of the class. Accessing and changing

29 IMAGE INTERFACE (png) Chapel By Example - Image Processing

member values happens the same way. We can of course instantiate the class when we declare the variable, but
watch what happens after we create the copy.

var cpcls = excls;

writef ("make cpcls: %$4i x %4i (= %6i npix) nil r? %s == excls? %s\n",
cpcls.ncol, cpcls.nrow, cpcls.npix, (nil == cpecls.r),
(cpcls == excls));

> make cpcls: 10 x 200 (= 2000 pix) nil r? true == excls? true

excls.ncol = 20;

excls.npix = 4000;

writef ("excls changed: %4i x %4i (= %6i npix) nil r? %s\n",
excls.ncol,excls.nrow, excls.npix, (nil == excls.r));

writef ("cpcls now: %$4i x %4i (= %6i npix) nil r? %s == excls? %s\n",
cpcls.ncol, cpcls.nrow, cpcls.npix, (nil == cpcls.r),
(cpcls == excls));

> excls changed: 10 x 400 (= 4000 pix) nil r? true

> cpcls now: 10 x 400 (= 4000 pix) nil r? true == excls? true

The change to excls' ncol and npix appears in cpcls because both variables point to the same underlying
memory.

(By the way, the reason for always testing if the r field is ni1 is because the Chapel write routines don't
understand how to print a c_ptr. The compilation will fail.)

You can define constructors and destructors for both records and classes. Constructors have the name of the
structure and take any arguments that you want, which are supplied when instantiating with new. Destructors are
named deinit () and take no arguments. They're called before Chapel releases the instance's memory.

class image_cls {
var ncol, nrow, npix : int;

proc image_cls(numcol : int, numrow : int) {
ncol = numcol;
Nrow = NUMIrow;
npix = numcol * numrow;

proc deinit () {
writeln ("freeing allocated image");

var eximg = new image_cls (10, 20);

writef ("image size %4i x %4i (= %6i npix)\n",
eximg.ncol, eximg.nrow, eximg.npix)j;

> image size 10 x 10 (= 200 npix)

Be aware that there is one critical difference between records and classes. Records are automatically created and
destroyed, classes are handled manually. You can use new with a record to access a constructor; if you provide a

30 IMAGE INTERFACE (png) Chapel By Example - Image Processing

custom constructor the default version will not be available. Without using new a record's fields are initialized to
their default per their type. When a record variable leaves scope its destructor, default or custom, executes — you
cannot do this yourself. On the other hand, a class variable is ni1 when declared and you must use new to create
an instance. You must use delete to call the destructor, and if you do not you will leak memory.

class test_cls {
var tmp : int;

proc ~test_cls() {
writeln(" called class destructor, tmp was ", tmp);

}

record test_rcd {
var tmp : int;

proc ~test_rcd() {
writeln(" called record destructor, tmp was ", tmp);

proc test_destructl() {
var ¢ = new test_cls(3);
var r = new test_rcd(2);

writeln("in test_destructl:");
/* This leaks c. */

proc test_destruct2() {
var c¢ = new test_cls(2);
var r = new test_rcd(3);

writeln("in test_destruct2:");
delete c;

test_destructl();

> in test_destructl:

> called record destructor, tmp was 2
test_destruct2();

> in test_destruct2:

> called class destructor, tmp was 2

> called record destructor, tmp was 3

The examples for records and classes can be compiled and run with

chpl -o bin/ex_struct ex_struct.chpl
or make ex struct

31 IMAGE INTERFACE (png) Chapel By Example - Image Processing

bin/ex_struct

Just as procedure arguments and return values have intents, methods have an optional qualifier. A type intent
makes a static method.

class num {
var v : int;

proc type dump (msg : string) {
writeln (msg);

num.dump ("calling without an instance")
> calling without an instance

Such a method cannot be called on an instance of the class.

var n = new num(3);

n.dump ("or via an instance");

> ex_method.chpl:18 error: unresolved call 'num.dump ("or via an
instance")'

> ex_method.chpl: 5: note: candidates are: num.type dump (msg:string)

A ref intent means the argument, an implicit this or the instance itself, is passed-by-reference and can be
changed. In this example we replace the existing instance with a completely new one. The %t format specifier
prints an object-dependent description. Note that you can declare a method outside its class by fully qualifying
its name.

proc ref num.changelnst () {
this = new num(5);

var oldn = n;
writef ("original instance %t (same as old? %s)\n", n, (n == oldn));
> original instance {v = 3} (same as o0ld? true)

n.changeInst () ;
writef ("new instance %t (same as o0ld? %s)\n", n, (n == oldn));
> new instance {v = 5} (same as old? false)

There is a third method intent, param, that means it can only be applied to a compile-time parameter. You can
define such methods on custom classes as we have done here, or the built-in types.

Compile and run the examples for method intents with

chpl -o bin/ex method ex_method.chpl
or make ex_method

bin/ex_method

32 IMAGE INTERFACE (png) Chapel By Example - Image Processing

So how do we apply this to our example? We have a problem that rgbimage in img_png.h was essentially
defined as a record, but we always use a pointer to it. We also allocate memory and have the problem that
Chapel does not necessarily use the C standard library (it uses jemalloc in distributed systems) and cannot
manage the arrays. Instead of a record we really want to work with a class, where we control the object's life
cycle. This requires changing the C-side structure to

typedef struct __ rgbimage {
int ncol, nrow;
int npix;
uchar *r, *b, *g;

} _rgbimage, *rgbimage;

This pattern:

typedef struct _ D {
} _D *D;

is required by the Chapel compiler when it parses the header file. In other words, the structure name (D) must be
a pointer to a structure whose type alias is the same except for a leading underscore (_p) and whose name has
two leading underscores (__D). The edit can be found in img_png_v2.h.

Only the class members that match the C structure elements are linked. The Chapel class can leave some out, in
which case they aren't accessible. The class can also add members, which have no effect on the C elements.
This also is true for methods.

To access the members in Chapel we delete the empty type definition for rgbimage ('extern type
rgbimage;") and declare an extern class:

extern class rgbimage {
var ncol : c_int;
var nrow : c_int;
var npix : c_int;
var r : c_ptr(c_uchar);
var g : c_ptr(c_uchar);
var b : c_ptr(c_uchar);

}

We'll use a variable to this class, but not instantiate it because the memory allocation is done C-side in
PNG_read (). The variable defaults to nil when declared, which is the value we need for the first C allocation.
When done we must call free_rgbimage () with the variable as the argument to release the memory and again
set the Chapel value to nil. We do not use new and delete with this class. Effectively the variable is a pointer
to data that Chapel knows now knows how to access but does not control.

Now, how to access the image arrays without going through read_rgb () orwrite_rgb ()? If you look in
CHPL_HOME/modules/standard/SysBasic.chpl, you'll find the definitions for the C equivalent types. c_ptr ()
is in CHPL,_HOME/modules/internal/CPtr.chpl. It turns out this is a class with three member functions:

class c_ptr {
/* The type that this pointer points to */

33 IMAGE INTERFACE (png) Chapel By Example - Image Processing

}

type eltTye;

/* Retrieve the i'th element (zero based) from a pointer to an array.
Does the equivalent of ptr[i] in C.

*/

inline proc this(i: integral) ref {
return _ primitive ("array get", this, i);

}

/* Get element pointed to directly by this pointer. If the pointer
refers to an array, this will return ptr[O0].

*/

inline proc deref () ref {
return primitive ("array_get", this, 0);

}

/* Print this pointer */

inline proc writeThis (ch) {
(this:c_void_ptr) .writeThis (ch);

Classes support a method this in addition to the member this (which appears in the call to __primitive())
which allows us to treat the instance as a procedure. In other words, we can write the instance variable followed
by arguments inside parentheses, just like a procedure call. Here the method has a ref return intent, so it acts as
both a getter and a setter for the an array element using the internal Chapel function array_get. If rgb is an

instance

of our rgbimage class, then

rgb. r (xy)

will retu

rn the pixel value at index xy and

rgb.r (xy) = newval;

will change the value.

We can now replace our call to read_rgb ()

read_rgb(rgb, x, y, rpix, gpix, bpix);

with

const xy = (y * rgb.ncol) + x;
rpix = rgb.r(xy);

gpix

rgb.g(xy);

bpix = rgb.b(xy);

xy here is just the conversion we've seen from a 2D point to a 1D array index.

Similarly, the call to write_rgb ()

write_rgb(rgb, x, y, 1, 2, 3);

becomes

34

IMAGE INTERFACE (png) Chapel By Example - Image Processing

const xy = (y * rgb.ncol) + x;
rgb.r(xy) = 1;
rgb.g(xy) 2;
rgb.b (xy) 3;

The new version of the program can be found in rw_png_v2.chpl. Compile and run it with

chpl -o bin/rw _png v2 rw_png v2.chpl img png v2.h build/img png v2.o0 -lpng
or make rw_png_ v2

bin/rw_png_v2 —--inname=bear.png —--outname=tstimg.png —--x=615 —-y=212

The output will be the same as img_png_v1 and test_png except you will also see the size of the image, showing
that we can directly access the image data.

Modules (rw_png_v3.chpl)

If we forget to pass arguments on the command line, or cause an error by giving the wrong input file name for
example, the program will crash. We should at least fail gracefully and clean up after ourselves. (Our policy
here is to free any memory we've allocated, even after an error, which helps with memory leak checks).
Improving this will introduce us to Chapel's module system.

Modules are a simple namespace. They can declared implicitly or explicitly. An explicit declaration contains the
keyword module followed by a name and a set of statements wrapped in braces:

module example {

}

Any symbols that are defined within the braces are scoped to the module. An implicit declaration uses the name
of the file, less the ".chpl' extension, as the module name. So the two programs we've looked at so far have
actually defined two modules, rw_png_v1 and rw_png_v2, with all variables and procedures local to them. Note
that if the file name does not form a legal identifier (alphanumeric plus underscore and dollar sign) then the
module cannot be referenced.

There may be multiple modules in a file, and they may nest. In this case the inner modules see all symbols in the
outer, but the inner symbols must be qualified with the module name when used in the outer scope.

module outerexample {
var outervar : int (64);
/* Must access innvervar with innerexample.innervar. */
module innerexample {
var innervar : int (64);
/* Can access outervar without qualifying the name. */

}

If there are symbols at the top file level outside a module, and a module is also defined, then that module is
nested inside the intrinsic module.

Statements at the top level of a module are executed as the module is created. This is what's happening in our

example programs. Chapel processes the implicit module for each file and executes the statements along the
way. Because these statements aren't part of a procedure, some, like return, aren't legal. The compiler will

35 IMAGE INTERFACE (png) Chapel By Example - Image Processing

raise an error.
To use a module, give the keyword use and the name.
use example;
If only an inner module is needed, provide its fully qualified name.
use outerexample.innerexample; /* outerexample is not accessible. */
You do not need to qualify a symbol in that module, ex.
innervar = 10;
But you can always provide a fully qualified name to access anything.
outerexample.outervar = 11;

Symbols within modules, either variables or procedures, may be hidden from access outside the module by
prefacing them with private. If public or no keyword is used, then they will be visible. If modules are
nested then the inner can see the private symbols in the outer, but not the other way around. Note that you
cannot use a fully qualified name to gain access. Modules themselves may also be declared public or private by
putting the qualifier before the module keyword.

You'll see the private keyword in use later when we pull common code into library files, which will start with
ip_. An example for this section is ip_color_v1.chpl.

You do not have to list files with modules in the compile command. They'll be found and pulled in
automatically.

Chapel provides a large set of modules. In CHPL_HOME/modules/internal you'll find those used to implement
the language, and in CHPL,_HOME/modules/standard the standard libraries. CHPL_HOME/modules/packages
are libraries that haven't yet matured. Each source file in the library has its documentation embedded in it, which
is extracted into CHPL_HOME/doc/[rst/html]/modules.

Any Chapel program automatically uses four of the standard modules: Assert, IO, Math, and Types. You do not
have to import these yourself. We will need Help for this example.

Our first task is to sanity-check the config constants. Since 0 is a valid pixel address (x and y are 0-based), we
need to change the default initial value to something less than 0. We then test that the user has supplied a non-
negative value on the command line. We will also check that there are input and output file names; the default
initial value of an empty string will work fine. We will use the C function PNG_isa () to verify that the input
file is a PNG file. Once the file has been read, we can then check that x and y are not too big. Because the
values are 0-based, this means they must be less than the number of columns or rows.

The if statement has two forms. We can follow the conditional test with the keyword then and a single
command, possibly followed by e1se and a single command. Or we can use braces for multiple commands. If
we use the keyword form and nested i £'s, the e1se will bind to the last i f.

const a = 1;

const b = 2;

H N R

const ¢ = 1;

36 IMAGE INTERFACE (png) Chapel By Example - Image Processing

The example is in ex_if.chpl. Compile and run it with

or

if (a == b) then
writeln("a matches b");

writeln("going to next test");

if (a == ¢) then
writeln("a matches c");
else
writeln("a, c, differ");
writeln("tests done");
> going to next test
> a matches c
> tests done

if (a == b) {
writeln ("a matches b");

writeln("going to next test");

}
if (a == ¢) {
writeln ("a matches c");
} else {
writeln("a, c differ");
writeln("tests done");
}

> a matches c

if (a == b) then
writeln("a matches b");

else if (a !'= c¢) then
writeln("a, c, differ");
else

writeln("a matches c");

> a matches c¢

chpl -o bin/ex if
make ex if

bin/ex_if

What do we do if we have a bad value? The Help module provides one method, printUsage (), that creates
the usual output for the —-h argument to the executable. It prints a table with the standard command line
arguments and configuration variables. It does not exit, however. We'll create our own usage procedure that

prints an error message, then the normal help output, and then exits.

37

config const inname : string = "";
config const outname : string = "";
config const x : c_int = -1;
config const y : c_int = -1;

proc usage (msg : string) {

IMAGE INTERFACE (png)

Chapel By Example - Image Processing

writeln ("\nERROR") ;
writeln(" ", msqg);
printUsage () ;

exit (1);

if (x < 0) then

usage ("missing —-x or value < 0");
if (y < 0) then

usage ("missing --y or value < 0");
if ("" == inname) then

usage ("missing ——inname");
if (!PNG_isa(inname)) then

usage ("input file not a PNG picture");
if ("" == outname) then

usage ("missing —-outname");

PNG_read (inname, rgb);

if (rgb.ncol <= x) then

usage ("--x (0-based) >= image width " + rgb.ncol);
if (rgb.nrow <= y) then

usage ("--y (0O-based) >= image height " + rgb.nrow);

Note that we're using the integer interpretation of a boolean, ie. zero is false and everything else is true, for
the test on PNG_isa (). The + operator applied to string concatenates them. In the last two tests the ncol/nrow
integer is converted to a string representation and combined with the error messages.

Chapel uses a try. . .catch mechanism. Errors are a class hierarchy rooted in Error (in the ChplError internal
module) with specific error types in the SysError standard module. To raise an error use the throw new
<Errror>; statement. The procedure must also have the throws intent. In the caller wrap the function call in
try { } catch { }, where you can follow the catch with a type filter. For example, the IO module has two
check () procedures, one that returns the error in an argument. (This is historical, for compatibility with code
written before error handling was added to the language.)

38

/* Throw an error if a file is invalid */
proc file.check () throws {
if is_c nil(_file_internal) then
throw SystemError.fromSyserr (EBADF,
"Operation attempted on an invalid file"

)i

/* Return a syserr through out error if a file is invalid */
proc file.check (out error:syserr) {
var err : syserr = ENOERR;

try {
check () ;

} catch e : SystemError ({
err = e.err;

IMAGE INTERFACE (png) Chapel By Example - Image Processing

} catch {
err EINVAL;

error = err;

}

You can use try! instead of try. This causes Chapel to halt the program immediately. There is no final clause;
Chapel instead provides a de fer block to indicate which statements must execute when the block leaves scope.
Use this for cleanup.

This way of handling errors doesn't really help us, though, with handling C codes. We could always wrap the C
function and translate an error code into an Error, but we'll follow the C style and test the return value from the
PNG functions and manually clean-up and halt if there's a problem. Since we won't use the C interface much,
this is sufficient. For example,

var retval : int;
retval = PNG_write (outname, rgb);
if (retval < 0) {
free_rgbimage (rgb) ;
halt (“program stopped after error’);

}

The new version of the program can be found in rw_png_v3.chpl. Compile it with

chpl -o bin/rw_png v3 rw_png v3.chpl img png v2.h build/img_png v2.o0 —-lpng
or make rw_png v3

bin/rw_png_v3 —--inname=bear.png —--outname=tstimg.png —--x=615 —-y=212

Try different values for the arguments to see if they are handled correctly. To test the error handling, you can run
the program once and turn off write permission to the output file before running it a second time, which will
cause PNG_write () to fail.

Aside: Variadic Procedures (rw_png_v3b.chpl)

Although Chapel doesn't have macros, it does have generic procedures and compile-time parameters that let us
cleanly handle errors. Consider the following,

proc end_onerr (retval : int, inst ...%narg) : bool {

/* Note we skip the argument if we don't know how to clean it up. */

if (0 <= retval) then return false;

for param i in 1. .narg {
/* Note we skip the argument if we don't know how to clean it up. */
if (inst (i) .type == rgbimage) then free_rgbimage (inst (i));
else if isClass(inst (i)) then delete inst (i);

}

return true;

}

This uses a lot of the language we haven't seen yet. The .. .?narg notation denotes a variadic argument list of
mixed type (so this is a generic procedure). narg is the number of arguments in the list and is a parameter. The

39 IMAGE INTERFACE (png) Chapel By Example - Image Processing

2 is a query that assigns a value to narg when the compiler knows how many arguments there are from the
caller. for paramis a parameter loop that is unrolled at compile time, with the body repeated for each value in
the range 1. .narg. inst (i) accesses the i'th argument. inst (i) .type is the type of the argument, which
we test against the class name rgbimage. isClass () is a procedure in the standard module Types.chpl that
returns true if the argument is an instance of a class. If the i'th argument is an instance, we delete it. Other types
could be handled by adding clauses.

All this is done at compile time. If you wanted to limit the list to arguments of just one type, put the type name
before the ellipsis.

proc joinbyline(x : string...?)

You can also force the number of arguments by changing the '?' to a number. This might not seem useful — why
not just list that many arguments? — but consider that the number could be generated from a parameter and
therefore set at compile time.

Since the procedure cleans up and exits all we have to do is call it with the error code and data not managed by
Chapel.

retval = subroutine_returning error_value();
end_onerr (retval, objects_to_delete);

rw_png_v3b.chpl shows this procedure in use after the PNG_read () and PNG_write () calls. For simplicity
we'll stay with the approach in _v3 for the rest of this exercise, but we'll be using end_onerr () in the other
chapters. Compile the program with

chpl -o bin/rw _png v3b rw_png v3b.chpl img png v2.h build/img_png v2.0 -lpng
or make rw_png_v3b

bin/rw_png_v3b —--inname=bear.png ——outname=tstimg.png --x=615 —--y=212
Aside: Main / Program Organization (rw_png_v4.chpl)

One final small question to answer. Passing named options on the command line adds a good bit of typing. Is
there a way to parse the command line? In C we get the options as strings passed to main:

int main(int argc, char **argv) { .. }

but our programs don't have a main () function.

Well, they do, but it's an empty procedure automatically generated by the compiler.
proc main() { }

Chapel starts a program by running all top-level statements in a module. Initialization begins in the module that
defines main (), then those it uses (but only once, so there cannot be multiple includes) in the order given in the
program. The example CHPL_HOME/examples/spec/Modules/init-order.chpl shows how this works:

module M1 {
use M2.M3;
use M2;
writeln("In Ml's initializer");

40 IMAGE INTERFACE (png) Chapel By Example - Image Processing

proc main () {
writeln("In main");

}

}

module M2 {
use M4;

writeln("In M2's initializer");
module M3 {
writeln("In M3's initializer");

}
module M4 {

writeln("In M4's initializer");

In M4's initializer
In M2's initializer
In M3's initializer
In Ml's initializer

vV V. V V V <«

In main

M1 contains the main function, and begins with the 'use M2.M3;' statement. To initialize M3, we need to have
initialized M2, which requires setting up M4. Therefore, M4 is first, then M2 finishes its initialization before
M3. M2 has already been set up when we reach the 'use M2 ;' statement in M1, so we skip it and finish M1.
Finally the program starts executing main.

A program with multiple main procedures may fail to compile, depending on the implementation. The compiler
option -—-main-module <module> lets you select one.

main () can have two return types, void or int. If your program does not define main (), the auto-generated
version will return a void and the runtime will return O to the operating system. (In C this means the program
ran without error; any non-zero integer is interpreted as an error code.) Any return statements at the top level
must not have a value. If you do provide main (), you can leave off the return type and Chapel will infer it from
the return statements. If an integer is returned at any point, then one must be returned everywhere, including
at the end of the procedure. You cannot fall off the end without a return in this case.

Chapel does also support a main with one argument:

proc main (args: [] string) {
for a in args {
/* do work here */

}

This uses two language features that we'll talk about in the next exercise. [] indicates the variable is an array,
and for a in args loops over all elements of args, assigning each in turn to the variable a. Configuration
variables and built-in options that have already been processed are not passed to main (). You will not see them
in the list. The exception is -h and ——help, which are passed, with the goal being to allow the program to
provide a different help message or to supplement the standard text produced by the Help module. As with C,
the first argument will be the program name.

41 IMAGE INTERFACE (png) Chapel By Example - Image Processing

In rw_png_v4.chpl you'll find an example of using main () to simulate the argument naming rules for
procedures on the command line. That is, with these edits command line options can either be given by their
flag (--inname=<file>) or positionally. The positional arguments work from left to right, skipping those that
have been provided. So without any named options the program will take four values on the command line,

rw_png_v4 <inname> <outname> <x> <y>
(the same order as for test_png). If ——x were given, then three would be needed:
rw_png_v4 —--x=<x> <inname> <outname> <y>

The changes needed to implement this are to make the four variables var instead of const (so we can change
them), wrapping all the code outside the variable and procedure declarations in main (), and adding this loop:

for a in args[1l..] {

if (("-h" == a) [| ("--help" == a)) {
printUsage() ;
exit (0);

}

if ("" == inname) then inname = a;

else if ("" == outname) then outname = a;

else if (x < 0) then x a : c_int;
else if (y < 0) then y
else usage('"too many arguments on command line");

}

a : c_int;

There's a couple features in this code that we haven't seen yet. args[1..] represents a slice — a subrange of the
array. It starts at index 1 and goes on until the array runs out of elements. We need to skip the first element, the
program name. The second thing is the presence of a type when x or y are set, asin x = a : c_int. The type
here represents a cast, and uses built-in converters from strings to the numeric types. We don't need an
equivalent to C's sscanf (). So for each argument in the array we test which configuration variable has not yet
been set in the order arguments should appear on the command line. The variable will have already been set if it
was provided by a command line option.

As usual, compile and run this with

chpl -o bin/rw_png _v4 rw_png_v4.chpl img png v2.h build/img_png v2.o0 -lpng
or make rw_png v4

bin/rw_png v4 —--inname=bear.png --outname=tstimg.png --x=615 --y=212

This is not a recommendation for using main () to parse the command line! The purpose of this chapter was to
talk about the overall program organization and the start-up sequence. We will not use this style again, but will
always employ command-line options. If typing the options gets tiresome you can instead put them in a file, as
we'll see in the Gabor Filter chapter.

One other note that hasn't fit elsewhere. Chapel supports both /* and */ and // style comments. /* */ nest, so

/* this is

42 IMAGE INTERFACE (png) Chapel By Example - Image Processing

is legal.

/* a wrapped comment */
wrapper */

Wrap-Up

We've used the need to use a C library to read and write images to cover Chapel's variables and procedures, the
basic data structures, and program organization. We've learned:

43

There are a few primitive data types: int, uint, real, imag, complex, bool, and void. These are
qualified by bit-size. Strings are a class that hold an array of ASCII characters and a length. They must
be manually translated to C's null-terminated arrays.

There are three variable types: param (compile-time constant), const (run-time constant), and var
(normal variable). Variables may be qualified as extern (are imported from C) or config (can be
provided on the command line).

Function arguments can be named and can have default values. You can mix positional with named
arguments in the function call.

Function arguments have one of six intents: in (input), out (value in caller will be changed but function
does not see original value), inout (function does see original value, and modifies in caller's scope),
ref (pass by reference rather than value, modifies value in caller), const in (input, but cannot be
modified within function; this is the default for the primitive types), and const ref (pass by reference,
but no modifications allowed; this is the default for structural types).

Functions may have four intents on the return: re £ (function returns a variable that can be modified, ie.
the function can be placed on the left side of an assignment), t ype (function returns a data type), and
param (function returns an expression suitable for a parameter), throws (function may raise an error).

Functions and some operators may be overloaded. The compiler will chose the appropriate version
based on the number and type of arguments in the call.

Functions may be declared inline.

Functions may have a variable number of arguments, of potentially different types. Chapel allows
reflection on the types at both compile and run time.

There are three structural types: classes, records, and unions. They can have members, or fields, and
methods. They support an inheritance hierarchy (not covered in this chapter).

Unions may have only one member active at a time. They are copied by value.

Records and classes are largely the same; the major difference is that records are passed by value (ie. a
copy is made) and classes are handled by reference (a copy still refers back to the original).

Classes and records can have constructors that are called with new and destructors for clean-up.

IMAGE INTERFACE (png) Chapel By Example - Image Processing

Class or record methods may have three intents: t ype declares a static procedure accessible through the
structure and not an instance, a ref method modifies the instance itself, and param requires that the
instance is a compile-time parameter.

Records are created and destroyed automatically, although you can use new to call a custom constructor.
Classes are handled manually. You must call delete on an instance to free its memory.

Importing a pointer-to-struct from C requires a special naming layout, and links to a Chapel class. The
class may contain fewer or more members. Only those that match will link to the C structure.

Chapel programs are split into modules. There is an implicit module per source file, and sub-modules
may be declared with the module keyword. The use statement allows one module to refer to another's
variables and procedures, although fully qualifying the symbol by pre-pending the module name is
always possible. You do not have to list files with modules on the command line.

There may be one main () function defined, or the compiler will add one implicitly. Modules are set up
in the order of their use, starting with the module with main ().

Chapel uses both single-line // and multi-line /* */ comments. /* */ nest.

Now that we can read in images, it's time to actually some parallel image processing. We'll start with a color
conversion program.

Exercises

1. We're writing a greyscale image as a color image, setting all three color planes to the same value. PNG does
have a PNG_COLOR_TYPE_GRAY that takes only a single byte instead of three, saving space. Modify
PNG_write () to take an extra argument whether to save all three color planes or just one (specifying which
plane to save). (You'll find our modification in img_png_v3 and rw_png_v5. We'll be using this version for the
color converter. If you define an enum in C to specify the color planes, then its members can be imported one by
one into Chapel by declaring them extern const.)

2. Add a cropping function in C that takes one rgbimage and the corners of a cropping rectangle, or one corner
and a width and height, and creates a new image with just the pixels inside. Create a Chapel program that reads
an image, crops it, and writes the smaller image back out.

Files

A tarball with the programs and image for this chapter is available here. A zip file is here.

A PDF copy of this text is here.

44

IMAGE INTERFACE (png) Chapel By Example - Image Processing

pdf/chapel_by_ex_png.pdf
data/chapel_by_ex_png.zip
data/chapel_by_ex_png.tar.gz

COLOR CONVERSION (color)

Introduction

For our first image processing exercise we want something simple that loops through an image pixel by pixel.
We'll chose color conversion as our problem, which is a translation from the RGB color space of PNG to
another. It will introduce us to the Chapel concepts of domains and ranges, which is where we'll start to see the
power of the language. We'll also conclude our survey of the general language, covering expressions,
statements, enumerations, and tuples. Along the way we'll build a library (module) for color conversion, since
we'll be wanting to use this in the future. As with the previous exercise, we've gone overboard: the original plan
was to extract just a greyscale version of a color image. That is done in two versions of the first program,
lab_v1.chpl and lab_v2.chpl. We then went ahead and extended it to other color spaces, storing the conversion
as real numbers and building a general translation procedure to scale it to an 8-bit 1- or 3-color channel PNG.
That is the color_convert.chpl program.

The directory for this chapter is color. You'll be using the C routines for reading and writing PNG images in
img_png_v3.h and img_png_v3.c (from the first exercise of the PNG chapter). Programs can be built with make
name, where the name is the Chapel source file without the .chpl suffix. Executables are put in the bin sub-
directory. The build sub-directory holds object files and auto-generated dependencies for the C library. The
sample image for this exercise is bobcat.jpg.

The programs and image for this chapter are here (as zip file). A PDF copy of this text is here.

Aside: Color Spaces

PNG color images contain three color planes corresponding to red, green, and blue, with values between 0 and
255 (inclusive). This follows the data coming from the image sensor, where the pixels are covered by three color
filters. Each block of 2x2 pixels has a R G / G B pattern with green filters on a diagonal. This is called a Bayer
pattern or matrix. Because every pixel has only one filter, not three, the camera will interpolate the two missing
colors from the surrounding pixels in a process called de-mosaicing. By combining the three values we can
cover many colors (but not all). For example, yellow is R=255, G=255 and cyan is G=255, B=255. The
disadvantages of the RGB color model are that it does not match how we perceive color, which is a non-linear
process, it depends on the physical characteristics of the display which are non-linear and change with
technology, and it does not accurately reproduce color because there is no standard white reference.

Bayer RGGB matrix

Image to divie into color planes (not provided)

45 COLOR CONVERSION (color) Chapel By Example - Image Processing

pdf/chapel_by_ex_color.pdf
data/chapel_by_ex_color.zip
data/chapel_by_ex_color.tar.gz

R(ed) plane G(reen) plane - B(lue) plane

HSYV, or Hue Saturation Value, may be familiar to you by tools used to pick colors. It re-maps the RGB cube
into a cylinder. As the angle changes, the hue goes from red (at 0 degrees) to yellow (60), green (120), cyan
(180), blue (240), magenta (300), and back to red (360). The saturation is the "strongness" of the color, and at
low values the color approaches a grey value. The value is related to the brightness of the color. There are
several ways to define it, for example the largest R, G, or B component as a fraction of its maximum scale (255).
Small values mean the color is dark. The disadvantages of the HSV scale are those of the RGB, since it's just a
transformation of that space: brightness is on a linear scale but not perceived at such, perceived brightness
depends on the hue, and the values are not well-controlled since the underlying RGB model has no standard
definition. The conversion from RGB to HSV we use is:

H=60* (G- B) / (max - min) if R is the largest value
120 + (60 * (B - R) / (max - min)) if G is the largest
240 + (60 * (R - G) / (max - min)) if B is the largest

S =1 - (min /max)

V = max / 255

where min is the smallest of the R, G, and B values and max the largest. H takes values between 0.0 and 360.0
(you may need to wrap the calculated value into this range), S between 0.0 and 1.0, and V from 0.0 to 1.0.

' -

H-S plane, V=1.0, H horizontal axis H-V plane, S=1.0, H horizontal axis

(a uation) plane V(alue) lane

46 COLOR CONVERSION (color) Chapel By Example - Image Processing

YUYV or YCrCb is a broadcast standard. The Y channel carries luminance, and is modeled after how we perceive
brightness; green dominates this value. The Cr and Cb channels are the red and blue components with
luminance subtracted out and scaled as required. In a broadcast system Y corresponds to a black-and-white
television signal, with the red and blue difference channels added for color. This is the model used by JPEG
images and MPEG video. The YCrCb calculation is supposed to use a non-linear compression, called gamma
correction, of the underlying R, G, and B data. The (linear) conversion we use is:

y= 16 + (0.299 * R) + (0.587 * G) + (0.114 * B) range 16 t/m 235

u =128 - (0.168 * R) - (0.331 * G) + (0.500 * B) range 16 t/m 239

v = 128 + (0.500 * R) - (0.419 * G) - (0.081 * B) range 16 t/m 239
U-V plane, Y=128, U hor axis Y-U plane, V=128, Y hor axis Y-V plane, U=128, Y hor axis

Y plane (luminance/greyscale) U (Cr) plane V (Cb) plane

The LAB standard (aka CIE L*A*B*) is a device-independent color space designed to be perceptually uniform,
with differences between colors independent of the colors themselves. As with YUV, L is the lightness of a color
and A and B are color difference channels. Negative A corresponds to green and positive A to red; negative B
corresponds to blue and positive B to yellow. If A and B are 0 then we have a greyscale value. The color space
is non-linearly compressed, and can represent more colors than the RGB space. There are LAB points that do not
map back to valid RGB values. This space is more difficult to calculate, and uses the CIE XYZ space (which we
don't otherwise use) as an intermediate step:

X = ((0.49 * R) + (0.31 * G) + (0.2 =* B)) / (255 * 0.17697)

47 COLOR CONVERSION (color) Chapel By Example - Image Processing

((0.177 * R) + (0.812 * G) + (0.011 *B)) / (255 * 0.17697)
((0.01 * G) + (0.99 * B)) / (255 * 0.17697)

= 116 * map(Y * 5.6507) - 16

500 * (map(X * 5.6507) — map(Y * 5.6507))

= 200 * (map(Y * 5.6507) - map(Z * 5.6507))

map(t) =t ** (1/3) if t < 0.2069 or (7.787 * t) + 0.1379 else

WP PN K
|

(This mapping is a non-linear compression with a knee point at 6/29.) L takes values between 0.0 and 100.0, A
between -500.0 and 500.0, and B from -200.0 to 200.0. In practice the ranges for A and B are much smaller.
The scaling factor of 5.6507 for X, Y, and Z is actually related to the choice of a white point, the color at which
L=100.0 and A=B=0.0. We chose the value so that (255, 255, 255) is treated as white, but remember that the
RGB space is uncontrolled and this may not represent true white in the scene.

L-A plane, B=0, A horizontal axis L-B plane, A=0, B horizontal axis

ane o A plane B plane

Language Description
To avoid scattering our discussions about the language amongst the programs, we'll start by talking about the

basic language concepts separately. We'll then discuss arrays, domains, and ranges with the programs as
examples.

Expressions and Operators

Operators (listed in order of precedence within each group)

arithmetic ** * / % 4+ (unary) - (unary) + (binary) - (binary)
comparison <= >= < > == I=

logical & & | && ||

bit ~ << >> & N

48 COLOR CONVERSION (color) Chapel By Example - Image Processing

structure
parallel
other
range

new

0 I
. by

Description and Notes

49

reduce scan dmapped sync single atomic

in if/then/else forall/do for/do
align

Unary minus (-) or negation inverts the sign of both components of a complex number.

writeln("-(1.0
> —=(1.0 - 2.01)

=", —(1.0 - 2.0i));
-1.0 + 2.0i

- 2.0i)

Arithmetic operations on the largest integer types may be restricted. Combinations of uint (64) and
int (64) raise an error. uint (64) cannot be negated. Division drops fractions giving the integer

closest to zero.

Addition (+) and subtraction (-) on a mixture of real and imaginary arguments produce a complex
number. Multiplication (*) and division (/) convert between the two as appropriate (ex. imaginary *

imaginary = real).

writeln("1.0i * -2.01i

, 1.0i * -2.0i);

>1.0i * -2.0i = 2.0

writeln("1.0i * 2.0 = ", 1.0i * 2.0);
>1.0i * 2.0 = 2.0i

writeln("3.0i / 2.0i =", 3.0i / 2.01i);
>3.01i / 2.016 =1.5

writeln("3.0i / 2.0 =", 3.0i / 2.0);
>3.0i / 2.0 =1.51i

Addition (+) where one operand is a string converts the other to a string and concatenates them.

writeln("\"concat\" + true

> "concat"

+ true

=", "concat" + true);

concattrue

Modulus (%) is only defined for integers. The result has the same sign as the dividend.

writeln("9 % 5

> 9 %5 =14
writeln (" (-9) %
> (-9) $ 5 =-4
writeln ("9 %

> 9 % (-5) =4

(=5)

"' 9% 35);

5=", (-9) % 5);

="
- 1

9 % (=5))i

Integers are treated as a collection of bits when applying the bit operators. That is, the interpretation of
the sign is ignored. Combining an int with an uint gives an uint.

/* ineg == -86,

COLOR CONVERSION (color)

ipos == 85, u 204 */

Chapel By Example - Image Processing

50

const ineg int (8) = 0b10101010
const ipos int (8) = 0b01010101
const u uint (8) = 0b11001100
writef ("ineg | u = %08bu (%u)\n",

> ineg | u = 11101110 (238)

writef ("ipos | u = %08bu (%u)\n",

> ipos | u = 11011101 (221)

writef ("ineg | ipos =

> ineg | ipos = 11111111 (255)

& u = %08bu (%u)\n",
10001000 (136)

writef ("ineg
> ineg & u =

& u = %$08bu (%u)\n",
01000100 (68)

writef ("ipos
> ipos & u =

writef ("ineg & ipos =

> ineg & ipos = 00000000 (O)

writef ("ineg * u = %08bu (%u)\n",

> ineg * u = 01100110 (102)

writef ("ipos * u = %08bu (%u)\n",
> ipos * u = 10011001 (153)

%$08bu (%u) \n",

%08bi (%i)\n",

int (8);
int (8);
uint (8) ;
ineg | u, ineg | u);
ipos | u, ipos | u);
ineg | ipos, ineg | ipos);

ineg & u,

ipos & u,

ineg &

ineg * u,

ipos * u,

ipos,

ineg & u);

ipos & u);

ineg & ipos);

ineg * u);

ipos # u);

writef ("ineg * ipos = %08bi (%i)\n", ineg ~ ipos, ineg * ipos);
> ineg ” ipos = 11111111 (255)

writef ("~ineg = %08bi (%i)\n", ~ineg, ~ineg);

> ~ineg = 01010101 (85)

writef ("~ipos = %08bi (%i)\n", ~ipos, ~ipos);

> ~ipos = 10101010 (170)

writef ("~u = %08bu (%u)\n", ~u, ~u);

> ~u = 00110011 (51)

Left shift (<<) inserts zeroes in the low-order bits. Right shift (>>) inserts 1's for negative integers and

0's for all other cases.

writef ("ineg << 2 = %08bu (%u)\n",

> ineg << 2 = 10101000 (170)

writef ("ipos << 2 = %08bu (%u)\n",

> ipos << 2 = 01010100 (85)

writef ("u << 2 = %08bu (%u)\n", u

> u << 2 = 00110000 (204)

writef ("ineg >> 2 = %08bu (%u)\n",

> ineg >> 2 = 11101010 (170)

writef ("ipos >> 2 = %08bu (%u)\n",

COLOR CONVERSION (color)

ineg << 2,

ipos << 2,

<< 2, u);

ineg >> 2,

ipos >> 2,

inegqg) ;

ipos);

ineg) ;

ipos) ;

Chapel By Example - Image Processing

51

> ipos >> 2 = 00010101 (85)

writef ("u >> 2 = %08bu (%u)\n", u >> 2, u);
> u >> 2 = 00110011 (204)

And (&), or (1), and xor (*) can be interpreted as logical operators when they operate on integers, using
the normal "0 is false, anything else is true" interpretation.

And (s&) and or (| |) short-circuit: the second argument is not evaluated if the first is respectively false
or true. For example,

(denom !'= 0) && ((num / denom) < 10)

will never generate a divide-by-0 exception because the first test means the && must be false if the
denominator is 0 and the second term will never be evaluated.

The relational operators applied to strings cause a character-by-character comparison, where the ordering
depends on the encoding. String equality means both operands match exactly.

Equality (==) and inequality (!=) for classes checks that the operands do (not) reference the same
storage location. For records, the value of each field is compared.

The by operator (by) controls the step-size across a range or domain. The alignment operator (align)
sets the offset, and the count operator (#) adjusts the range to generate a given number of values.

if..then..else as an expression is equivalent to the ternary 2: in C. The else is generally
required, except inside a for or forall loop expression. Only the expression in the then or else
clause that is true is evaluated. For example,

a = if (dx == 0) then (pi / 2.0) else atan(dy / dx);

for used as an expression performs the loop and returns the results at each step in an array. For
example,

odd = for i in 1..100 do if (0 != (i % 2)) then i;

Here we see an i f. .then expression without an else. odd will contain the odd numbers from 1 to
100 in an array.

new creates an instance of a class. The dot operator (.) accesses a member or method of a class, record,
or union.

Arrays are indexed using parentheses, not brackets, but are declared with brackets. Parentheses are also
used to group terms in expressions, hold arguments to functions, and to form tuples. Braces are used to
define domains and group statements. Brackets are used to define arrays and for array types, and in
forall expressions. They may also be used to hold arguments to functions. Yes, this works:

proc tstfn(i : int) { writeln("tstfn called with " + i) };
tstfn[2];
> tstfn called with 2

COLOR CONVERSION (color) Chapel By Example - Image Processing

The cast operator (:) forcibly converts between data types, raising an error if it is not possible. Chapel will
implicitly convert mixed type expressions if it can do so without losing information. In other words, an

uint (s) cancastto an uint (t) ift >=s, and to an int (t) if t>s. Additionally, Chapel allows conversions
from int (64) and uint (64) to real (64) and complex (128) even though the destination types cannot hold
all the bits. An explicit cast can lose information, for example the extra bits from a larger int will be dropped
when going to a smaller, and a real may lose precision.

const spos : int (16) = Oxcafe : int (16);
writef ("Ox%xu : int(8) = Ox%xu\n", spos, spos : int(8));
> Oxcafe : int (8) = Oxfe

Casting from numbers to booleans follows the "0 is false, all else is true" rule. We have seen in the example
with processing the arguments to main () that a string can be cast to another type. If the parse fails, then the
program will crash with an error. Note that the integer base prefixes 0x, 0o, Ob will not be read.

const icast = "1234" : int;

writef ("\"1234\" : int = 0x%xi\n", icast);
> "1234" : int = 0x4d2

const ucast = "1234" : uint(8);

writef ("\"1234\" : uint (8) = 0x%xu\n", ucast);
> "1234" : uint (8) = 0xd2

const imcast = "6.626e-34i" : imag;

writef ("\"6.626e-34i\" : imag = %m\n", imcast);

> "6.626e-34i" : imag = 6.626e-34i

const bcast = "false" : bool;
writef ("\"false\" : bool = %s\n", bcast);
> "false" : bool = false

But not all casts are allowed. The language specification spends a chapter talking about the rules.

The code snippets demonstrating the operators can be found in the file ex_op.chpl. Compile and run them with
make ex_op
bin/ex_op

Statements

Statements may be grouped into blocks by putting them inside braces. Semicolons terminate statements but are
not needed after braces.

Assignments

Assignment statements set the value of the left hand side to the right, or copy a reference if appropriate. Several
operators may be combined with the assignment to form a compound assignment.

a <op>= b means a = a <op> b

For example, if a = 0b11011; a A=0b01101 means a will end up with the value 0b10110. The compound
assignments are +=, -=, *=, /=, **= &= |5, A=) &&=, ||5, <<=, >>=,

52 COLOR CONVERSION (color) Chapel By Example - Image Processing

Swap

The swap statement transfers the values between two variables.
a <=> b;

is equivalent to
const £t = b; b =a; a=t;

If .. then .. else

We've already seen the i f..then. .else statement in the rw_png_v4.chpl example in the previous section.
Use the keyword then only if it's followed by a single statement, otherwise a block is needed. E1se, if desired,
must be written and followed by a single statement or a block. If the conditional expression can be evaluated at
compile time, then the test will be deleted and the appropriate result will be kept. Each block, or even single
statement, following an i £ generates its own scope so that variables can be locally declared.

if (a < b) then writeln("a smaller"); else writeln("b smaller");
if (max < min) {

writeln("max smaller than min, swapping");

min <=> max;

} else {
var midpt = (min + max) / 2;
writeln ("midpoint of ", min, " and ", max," is ", midpt);
}
Select

The select statement is used to chose between alternatives. It takes an expression that is compared to each
values in each when, where there may be many comma-separated values/expressions in the list. If there is a
match, then the statements(s) afterwards are executed. As with if. .then, you can place the keyword do before
a single statement, or use braces to surround a block. There can be one otherwise clause that captures any
value not matching a when. Each block, or single statement, after a when is in its own scope.

select imgname {
when '"fisher" do writeln("haven't got a picture of a fisher yet");
when "bobcat" {
var rgb : rgbimage;
PNG_read ("bobcat.png", rgb);
PNG_write ("copy_bobcat.png", png);
free_rgbimage (rgb) ;
}
otherwise writeln("don't know about an image named ", imgname);

}
While .. do, do .. while

The while statement can have either a while..do or do. .while form. The first evaluates its condition before
entering its loop, so that if the condition is initially false the do statements will never execute. The second form
evaluates its condition after the first pass and guarantees that the do statements will execute at least once. In the

53 COLOR CONVERSION (color) Chapel By Example - Image Processing

first form the do keyword is only needed if it is followed by a single statement, otherwise it can be replaced by a
block. The do is required in the second form. The block, or even single statement, will have its own scope, and
in the do. .while form this scope extends to the test condition. This means that variables (or constants)
declared in the body of the loop can be used in the test.

i=-1;
while ((0 <= i) && (i < 5)) { writef(" %i", i) ; i += 1; }

does not execute, but

i=-1;
do {
const j =i + 1;
writef (" %i", 1i);
i+=1;
} while ((0 <= j) && (j < 5))

produces
> -1 0 1 2 3 4
Here j is a constant that is created locally for each pass of the loop.

for

The for statement is a general loop over any data type, including classes, that provides an iterator called these.
For built-in types this includes ranges, domains, arrays, and iterators, none of which we've covered yet. The loop
variable is declared by the statement and is valid for the block. If the iterator provides multiple values, then you
can provide multiple variables that will automatically match. For example, the iterator for a 2D domain will
produce a tuple with the x and y coordinates, and we can put a tuple with two variables that will bind to these
coordinates. If there is no need for variables then they can be omitted. The format of a for statement is

for [param] <loop vars> in <iterator> do <single statement>
for [param] <loop vars> in <iterator> { <block> }

for <iterable> do <single statement>

for <iterable> { <block> }

The loop will execute serially once for each value produced by the iterator, and the block, or even single
statement, will have its own scope. If the param keyword is provided, then the iterator must be a range formed
by parameters, ie. known at compile-time. The loop is then unrolled and replaced in the compiled code by the
block evaluated for each possible value of the range. There is no loop in this case.

break, continue, label

The flow of execution within the while and for loops may be changed with the break and continue
statements. A continue causes the flow to immediately skip to the end of the block. A break causes the flow to
exit the loop. They are not permitted in parallel loops. You can also apply a label to a loop and give the label's
name to a cont inue or break to exit an inner loop.

label outer
for y in 1..5 {

54 COLOR CONVERSION (color) Chapel By Example - Image Processing

for x in 1..5 {
if (x == y) {
writef ("\n");
continue outer;
} else {
writef (" (%i,%i)", x,y);

}

writef ("\n");

(1,2)

(1,3) (2,3)

(1,4) (2,4) (3,4)

(1,5) (2,5) (3,5) (4,5)

VvV V. .V V VvV V

use, require

The use statement imports a module's symbols, making them available without qualification (you don't need to
prefix the symbol with the module name and '."). Multiple modules may be listed in one use statement,
separated by commas. It may be placed within a block, and only the block will see the import (essentially the
module is placed between the parent's and the block's scope). The require statement lists C header, source,
and object files and libraries to compile with the Chapel program.

1’0

The I/O statement <~> sends a value on the right side to an output (Writer) on the left, or puts a value from an
input (Reader) on the right into a variable on the left.

The code snippets for this section are found in ex_stmt.chpl. Compile and run them with

make ex stmt

bin/ex_stmt

Enumerations

An enumeration is a list of identifiers backed by integer values. Unlike C, they are not a synonym for an integer
but a separate type. To use an enum, you must type its name, a dot, and then the member's name. As an
example, consider a list of the color spaces we'll support:

enum clrspace {
HSV, LAB, YUV, RGB
}bi

config const space : clrspace;

if (clrspace.YUV == space) {
rgb_to_yuv(r, g, b, cl, c2, c3);

} else if (clrspace.HSV == space) {

55 COLOR CONVERSION (color) Chapel By Example - Image Processing

rgb_to_hsv(r, g, b, cl, c2, c3);

} else if (clrspace.LAB == space) {
rgb_to_lab(r, g, b, cl, c2, c3);
} else {

writeln ("unsupported color space " + space);

}

Although the final else isn't really necessary, our practice here is to include it in case we should ever change the
contents of the enum and forget to add a new value. You could also write this with a select

select space {
when clrspace.YUV do rgb_to_yuv(r, g, b, cl, c2, c3);
when clrspace.HSV do rgb_to_hsv(r, g, b, cl, c2, c3);
when clrspace.lLAB do rgb_to_lab(r, g, b, cl, c2, c3);
otherwise writeln ("unsupported color space " + space);

}

The otherwise is needed here too because the select does not check that all values are covered.

The first identifier in the enum is assigned 1, with the value increasing for each member thereafter. You can also
assign a number to one and the value will begin to increment from the next. The default value of an enum
variable is the first member. You can force two identifiers to have the same value, in which case they will be
considered equal.

/* HSV=1, LAB=2, YUV=1l, RGB=2 */
enum clrspace_v2 {
HSV, LAB, YUV=1, RGB

if (clrspace_v2.HSV == clrspace v2.YUV) then writeln("HSV, YUV identical");
> HSV, YUV identical

if (clrspace_v2.LAB == clrspace_v2.RGB) then writeln("LAB, RGB identical");
> LAB, RGB identical

if (clrspace_v2.HSV == clrspace v2.LAB) then writeln("HSV, LAB identical");

>

proc print_space (space : clrspace_v2) {
writeln ("picked color space " + space);

}

print_space (clrspace_v2.HSV);
> picked color space HSV

print_space (clrspace_v2.YUV);
> picked color space HSV

You can make a configuration variable an enum. In this case pass the member's name on the command line, not
its value.

config const space : clrspace_v2;

56 COLOR CONVERSION (color) Chapel By Example - Image Processing

writef ("From the command line you ");
print_space (space) ;

./ex_enum
> From the command line you picked color space HSV

./ex_enum —--space=LAB
> From the command line you picked color space LAB

./ex_enum —--space=YUV
> From the command line you picked color space HSV

./ex_enum —--space=2
> <command line setting of 'space'>: error: halt reached - illegal
> conversion of string "2" to clrspace_2

Here again we see the aliasing of the enum names from the underlying values.

You can use the enum as a constant directly, if Chapel can figure out the type to give the value. If it can't, cast it
appropriately.

enum clrmasks {
RED = 0xff0000, GREEN = 0x00ff00, BLUE = 0x0000ff
}

writef ("enum vals R 0x%06xu G 0x%06xu B 0x%06xu\n",
clrmasks.RED, clrmasks.GREEN, clrmasks,BLUE);
> enum vals R O0xff0000 G 0x00ff00 B 0x0000ff

writef ("decompose 0x123456 R 0x%06xu G 0x%06xu B 0x%06xu\n",
0x123456 & clrmasks.RED : uint), 0x123456 & (clrmasks.GREEN : uint),
0x123456 & (clrmasks.BLUE : uint));

> decompose 0x123456 R 0x120000 G 0x003400 B 0x000056

Without the explicit cast this will not compile because the type needed to pass to the & function isn't clear. The
sxu format string, by the way, is for a hexadecimal wint. Similarly you can go the other way, casting an int to

an enum constant.

writef ("convert int to enum ", 0xff0000 : clrmasks);
> convert int to RED

Compilation will fail if the integer is not a value in the enum.

The code snippets for enums are in ex_enum.chpl. Compile and run them with
make ex_enum
bin/ex_enum

Tuples

A tuple is a collection of unnamed elements, not necessarily all the same type. To construct a tuple put a list of
types between parentheses. If the types are all the same you can use the <number>*<type> notation, which

57 COLOR CONVERSION (color) Chapel By Example - Image Processing

creates that many elements of the given type.

var coord3D_1 : (int, int, int);
var coord3D_2 : 3*int;

Both define two triples where all three members are integers. If you want to create a tuple with just one element,
you must use the * notation, as Chapel's grammar resolves (<type>) as an expression with a type inside
parentheses.

var coordlD 1 : 1l*int;

If you assign a tuple to a new variable, the type of the elements on the right hand side determine the type of the
tuple on the left.

var coord3D_3 = (10, 20, 30);

This version is also a triple of three integers. Again there's confusion between a single number between
parentheses representing an expression or a tuple. To create such a tuple, leave a trailing comma.

var coordlD_2 = (100,);
You can retrieve the n'th value in the tuple, starting at 1, by putting the index in parentheses after the name.

writeln("y = ", coord3D_3(2));
>y = 20

You can iterate directly over the elements with a for loop.

for x in coord3D_3 do writeln("coord = " + x);
> coord = 10
> coord = 20
> coord = 30

Alternately, the method size is defined.

for i in 1..coord3D_3.size do writeln("coord " + i + " = " + coord3D_3(i));
> coord 1 = 10
20
> coord 3 = 30

> coord 2

You cannot loop like this, with either approach, if the tuple has multiple types.

Destructuring is a form of pattern matching where elements in a structure (a tuple in this case) are set position-
by-position to elements in a matching structure. The tuples can be nested. If you want to skip a value, put an
underscore at that position on the left side. Both sides must have the same number of elements.

var x, y, z : int;

(x, _, z) = coord3D_3;
writeln("x = ", x,
>x =10 y=0 z =3

Yy=".,Y
0

z=", 2);

The second member of coord3D_3 does not get assigned to anything; v keeps its default initialization value.

58 COLOR CONVERSION (color) Chapel By Example - Image Processing

Destructuring also works if tuples are declared as function arguments by wrapping them in an extra set of
parentheses.

Tuples support some operators. The unary operators +, —, ~, and ! are applied to each element, returning the
results in a tuple of the same size.

coord3D_2 = -coord3D_3;

for x in coord3D_2 do writeln("- coord = " + x);
> — coord = -10

> — coord = -20

> - coord = -30

Binary operators combine the elements at their corresponding position.

coord3D_1 = coord3D_3 * coord3D_3;

for x in coord3D_1 do writeln("coord*coord = " + x);
> coord*coord = 100

> coord*coord = 400

> coord*coord = 900

The operators that work for tuples are +, -, *, /, %, &, |, *, <<, and >>. If the tuple has a mixed type, then the
operator must be valid for all the types. Comparisons can also be made. For == all element pairs must meet the
condition, for != one pair must differ.

writeln("coord3D_3 == —-coord3D_2 ? ", coord3D_3 == —-coord3D_2);
> coord3D_3 == -coord3D 2 ? true

writeln("(1,1,1,0,1,1,1) !'= (1,1,1,1,1,1,1) 2 ",
(1,1,1,0,1,1,1) '= (1,1,1,1,1,1,1));
> (1,1,1,0,1,1,1) !'= (1,1,1,1,1,1,1) ? true

For >, >=, <, and <= elements are scanned from left to right. If the pair is equal it is skipped, otherwise the
relationship evaluates to true or false depending on if the condition is satisfied. If all elements are checked, then
the result if true if using >= or <=, else false. In other words, common elements at the start of the tuple are
ignored, and >= or <= only apply if the two are completely equal, with > and < failing if they are.

writeln("fail 1st index: (1, 2, 3) > (2, 2, 2) 2 ", (1, 2, 3) > (2, 2, 2));
> fail 1st index: (1, 2, 3) > (2, 2, 2) ? false

writeln("pass 1lst index: (3, 2, 1) > (2, 2, 2) ? ", (3, 2, 1) > (2, 2, 2));
> pass 1lst index: (3, 2, 1) > (2, 2, 2) ? true

writeln("fail 2nd index: (2, 1, 3) > (2, 2, 2) 2 ", (2, 1, 3) > (2, 2, 2));
> fail 2nd index: (2, 1, 3) > (2, 2, 2) ? false

writeln("pass 2nd index: (2, 3, 1) > (2, 2, 2) ? ", (2, 3, 1) > (2, 2, 2));
> pass 2nd index: (2, 3, 1) > (2, 2, 2) ? true

writeln("fail 3rd index: (2, 2, 1) > (2, 2, 2) ? ", (2, 2, 1) > (2, 2, 2));
> fail 3rd index: (2, 2, 1) > (2, 2, 2) ? false

writeln("pass 3rd index: (2, 2, 3) > (2, 2, 2) ? ", (2, 2, 3) > (2, 2, 2));
> pass 3rd index: (2, 2, 3) > (2, 2, 2) ? true

59 COLOR CONVERSION (color) Chapel By Example - Image Processing

writeln("fail at end: (2, 2, 2) > (2, 2,2) 2", (2, 2, 2) > (2, 2, 2));

> fail at end: (2, 2, 2) > (2, 2, 2) ? false
writeln("pass at end: (2, 2, 2) >= (2, 2, 2) ? ", (2, 2, 2) >= (2, 2, 2));
> pass at end: (2, 2, 2) >= (2, 2, 2) ? true

The code for these examples is in ex_tuple.chpl. Compile and run it with

make ex_tuple

bin/ex_tuple

Arrays and Ranges (lab_v1.chpl)

The goal for this section is to convert our color input image to greyscale so that we can do further image
processing. We have two options, either calculate the L plane from the LAB space or the Y plane from YUV
(YCrCb). We'll pick the LAB transform, as defined above. For each pixel in the image we will need to calculate
L, and we will want to scale the value to an uint (8) (c_uchar) so we can write the result as a PNG. Although
we could do the conversion and scale it for display in one step, we'll break it into two. This will be closer to our
workflow later, of passing intermediate results from one processing routine to another until we're ready to save
the result. Therefore, we will create temporary arrays for the conversion and store all three components. We'll
further develop this approach in the next version.

An array declaration looks like
var <name> : [<domain>] <type>

A domain represents the indices that are valid for the array. It provides iterators so that we can traverse the set.
Domains may have as many dimensions as desired. They may use ranges of numbers, or a discrete set of values,
possibly non-numeric. They may be subsets of other domains or have a continuous (dense) or sparse set of
indices. They may be mapped to a specific runtime configuration involving different locales, which are
computational centers with processing and storage. Domains are one of the key abstractions Chapel provides for
safely working with arrays in a parallel environment.

We will be using a rectangular domain based on a range of numbers. A range is specified by its lower and upper
bounds, the stride or the increment in the index between steps, and its alignment or offset from 0. The format for
arange is

[<start>] .. [<end>] [by <stride>] [align <offset>]

Either the start or the end can be omitted; in this case the range will generate a potentially infinite sequence of
numbers. You can use the range to iterate over the sequence only if it has a start; a range unbounded at the start
can be used, however, to select a subset of another range, or if the stride is negative and you indicate how many
steps to take. An unbounded end can also be used to select a subset, or you can define the number of iteration
steps that will be taken with a positive stride. Note that the end value is inclusive.

You can think of the stride and alignment defining an infinite sequence of numbers, spaced by stride and
including align. The start and end points clip this sequence so that only members that fall between them
(inclusively) are generated. If the start or end are omitted then the sequence is infinite and can only be used if it
modifies another range or you provide a count of how many values you want.

Some examples. If we want to define a range covering all the pixels of an image

60 COLOR CONVERSION (color) Chapel By Example - Image Processing

0 .. (npix-1)

because the end is inclusive (in C we would write the loop as 'for (xy=0; xy<npix; xy++) { .. }'). The
default stride is 1 and the default alignment is 0. This generates all numbers from 0 t/m npix-1. If we want to
define a range covering one row, v,

(y*ncol) .. ((y+1)*ncol - 1)

assuming that we treat the array as nrow rows of ncol pixels each. The end of the row is just the pixel before
the start of the next row (y+1). If we want to define a range covering the first column

0 .. (npix-1l) by ncol

That is, we increment the index by an entire row between steps. If we want a column x in the middle, we can set
a range in two ways. First, we can change the start of the range

X .. (npix-1l) by ncol

This generates the numbers x, x+ncol, x+2*ncol, ... x+(nrow-1)*ncol through the last row.
Alternately we can specify the alignment

0 .. (npix-1l) by ncol align x

without changing the bounds that define the entire image. Qua style this is a better approach because it makes
clear what the limits of the image are and how we should cover pixels within it. The first option is closer to how
the loop would be written in C, however, and years of practice means it feels more natural.

The test program ex_range.chpl prints out the indices generated by a small 10x10 image. It can take two
command line arguments --x and —-vy to print a row or column. Compile and run it with

make ex_range

bin/ex_range

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 179
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

vV VV V V V V V VvV

bin/ex_range --x=5 /* 0..lastpix by ncol align x */
> column 5: 5 15 25 35 45 55 65 75 85 95

bin/ex_range —-y=5 /* y*ncol.. (y+1) *ncol-1 */
>row 5: 50 51 52 53 54 55 56 57 58 59

The program has checks that the column and row values are within the image. If you remove them, you'll notice

that the column can be any number and still generate a proper, valid sequence of indices. That's because the
alignment is taken modulo the number of columns — it is folded back into the sequence. Changing the alignment

61 COLOR CONVERSION (color) Chapel By Example - Image Processing

shifts the infinite sequence, and a shift by a multiple of the number columns intersects the image bounds at the
same points. This would not happen with the first alternative: if x was greater than or equal to nco1l then we
would skip rows at the start, and if it was greater than npix-1 we would generate no indices at all (if end < start
we have an empty set).

If the stride is negative the start and end indices are reversed internally so that the sequence counts down. When
writing out the range, however, still keep start < end.

Ranges are proper data structures and can be assigned to variables. Starting with an existing range, we can
generate a second in four ways.

1. by and align can be applied, modifying the base sequence. For example, here the first range generates the
odd integers to 20, and the second by takes every other one of those, or 1, 5, 9, 13, and 17.

(1..20by 2) by 2
2. We can say how many indices we want to generate. This is the count operator and the command looks like
<range> # <number>

This adjusts the bounds of the range, but not the stride, to create <number> steps. If <number> is positive the
values are taken at the start of the sequence, if negative from the end. This will generate the indices of column x
in the first five rows, or x, x+ncol, x+2*ncol, x+3*ncol, x+4*ncol.

(0 .. npix-1 by ncol align x) # 5
This for the last five rows, or x+(nrow-6)*ncol, x+(nrow-5)*ncol, ..., x+(nrow-1)*ncol.
(0 .. npix-1 by ncol align x) # -5

3. We can add or subtract a number from the start and end values. This also shifts the alignment, but not the
stride. For addition the number can be placed on either side of the range, ie. <range> + <number> or
<number> + <range>; for subtraction it can only go to the right, ie. <range> - <number>.

4. We can use a second range to take a subrange of the first. This is called slicing, and the resulting set is the
intersection of the two ranges. To define a slicing, place the second range in parentheses or brackets after the
first

<rangel>(<range2>) or <rangel>[<range2>]
where, as usual, the range can be either fully written out or a variable to which a range has been assigned.

For this program we only want a range to cover the entire image. The conversion to LAB is the heart of the
program. Let rgb_to_lab () be the top-level function that processes the entire image, and rgbpix_to_lab ()
a function to handle one pixel.

const LAB_LMIN
const LAB LMAX = 100.0;
const LAB_ AMIN -128.15;
const LAB AMAX = 182.46;
const LAB_BMIN -155.36;
const LAB BMAX = 156.20;

I I
o
=

62 COLOR CONVERSION (color) Chapel By Example - Image Processing

proc rgb_to_lab(rgb : rgbimage, ref lab : rgbimage) : c_int {

const imgbounds = 0 .. (rgb.npix-1); /* range covering image */
var 1 : [imgbounds] real; /* L color plane */
var 1_a : [imgbounds] real; /* A color plane */
var 1_b : [imgbounds] real; /* B color plane */

var retval : c_int;

retval = alloc_rgbimage (lab, rgb.ncol, rgb.nrow);
if (retval < 0) then return retval;

for xy in imgbounds {
rgbpix_to_lab(rgb.r(xy), rgb.g(xy), rgb.b(xy), l(xy), l_a(xy), 1l b(xy));

clamped = clamp(1l(xy), LAB_LMIN, LAB IMAX);
lab.r(xy) =

((255.0 * (clamped-LAB_LMIN) / (LAB_LMAX-LAB ILMIN)) + 0.5) : c_uchar;
clamped = clamp(l_a(xy), LAB AMIN, LAB AMAX);
lab.g(xy) =

((255.0 * (clamped-LAB_AMIN) / (LAB_AMAX-LAB_AMIN)) + 0.5) : c_uchar;
clamped = clamp(1l_b(xy), LAB_BMIN, LAB BMAX);
lab.b(xy) =

((255.0 * (clamped-LAB BMIN) / (LAB_BMAX-LAB_BMIN)) + 0.5) : c_uchar;

}

return O;

proc rgbpix_to_lab(r : c_uchar, g : c_uchar, b :c_uchar,
out 1 : real, out 1_a : real, out 1_b : real) {
/* see source for implementation */

proc clamp(val : real, minval : real, maxval : real) : real {
if (maxval < minval) then return minval;
else if (val < minval) then return minval;
else if (maxval < val) then return maxval;
else return val;

}

Here rgb is the PNG image we've read and 1ab is the greyscale image we'll create. The imgbounds range has
been used to create the arrays, as well as driving the for loop. rgbpix_to_1lab () uses an out intent on the
three components to modify the array elements in the caller directly. Internally it calls two other procedures for
the XYZ conversion and non-linear mapping. Remember that the LAB space is bigger than the RGB, so we
define constants LAB_[LAB]MIN and LAB_ [LAB]MAX that specify how to scale each component (Example 2
asks you to explain these values). The clamp () function limits the value to this range, and then we scale the
value and convert it to a uint (8). The 0.5 term is for rounding after the cast. We end up storing L in the R
plane of the lab image, A in the G plane, and B in the B(lue) plane. We can specify in the PNG_write () call
which plane we want to save since we're using the version from Exercise 1 of the previous chapter. CLR_R is the
luminance/greyscale information.

63 COLOR CONVERSION (color) Chapel By Example - Image Processing

The main () routine is simple. It checks that the command line arguments are valid, reads the image, calls
rgb_to_lab (), and writes the result.

config const inname : c_string; /* input file name */

config const outname : c_string; /* output file name */

proc main () {
var rgb: rgbimage; /* image we've read */
var grey : rgbimage; /* LAB transform in 8 bit grey */
var retval : c_int;

verify setup();

retval = PNG_read (inname, rgb);
end_onerr (retval, rgb);

retval = rgb_to_lab(rgb, grey);
end_onerr (retval, rgb, grey);

retval = PNG_write (outname, rgb, CLR_R);
end_onerr (retval, rgb, grey);

free_rgbimage (rgb) ;
free_rgbimage (grey) ;

return O;

}
Compile the program with
make lab vl

It takes two command line arguments. —-inname=<PNG file> is the file to read, and -—outname=<file> is the
file to create. You can try the program with

bin/lab_vl —--inname=bobcat.png —--outname=grey_bobcat.png

64 COLOR CONVERSION (color) Chapel By Example - Image Processing

Domains (lab_v2.chpl)

For the second version of the LAB conversion, we'll re-organize the program to make the two steps of the
process, conversion and 8-bit scaling, clear. We'll move the intermediate arrays we used into a separate data
structure. This gives us a chance to change the way we represent the image. We use a flat array when working
with C because building a 2D array, allocating row by row, is annoying. This requires that we transform (X, y)
image coordinates to an xy index; it's not a huge burden, creates standard idioms in code for loops, and is
efficient at addressing, but it does obscure the intent of the code if you aren't familiar with the approach. With
Chapel's ranges and domains it will be easy to use the coordinates instead of the index, so we will change to a
2D domain. As we split off the 8-bit scaling, we will also add different strategies other than over a fixed range,
which lab_v1 uses. This re-organization will lay the groundwork for the final program, a general colorspace
converter.

A domain has a number of dimensions called a rank. In lab_v1 the domains behind our arrays had a rank of 1:
they used a single index. In our Chapel images we want to work with rank 2. Indices will be represented by a
tuple (X, y). Our domain is rectangular and dense, meaning we will have data at all points inside it. In Chapel's
terminology we'll use a base, rectangular domain. To declare a domain, call the constructor

domain (rank=<number dimensions>, idxType=int, stridable=false);

As the named arguments imply, you can change the type of the index generated. The stridable flag turns on
support for the 'by' keyword, similar to striding in ranges. Since each index will have the same type, we can also
create a domain by passing a tuple with all elements of that type

domain (3*int) ;
Domains are proper data structures and may be assigned to variables.

For our images, we want a 2D domain. We'll start building a data structure to hold the arrays, using a class. We
need to track the image size and will still calculate the number of pixels, although there's less need for that since
we aren't using a 1D index. We've already seen how to define an array over a domain; we'll use c1, c2, and c3

65 COLOR CONVERSION (color) Chapel By Example - Image Processing

to represent generic color planes whose interpretation depends on the color space we're in. (Because we don't
usually mix color spaces within a program, we won't use an enum inside the data structure to track which space
is being used.) The members of the class are

class clrimage {

var ncol : int; /* width (columns) of image */

var nrow : int; /* height (rows) of image */

var npix : int; /* number pixels = w * h */

var area : domain (rank=2); /* array bounds by x and y */

var cl : [area] real; /* first color plane (L, H, ¥, R) */
var c2 : [area] real; /* second plane (A, S, U, G) */

var c3 : [area] real; /* third plane (B, V, V, B) */

}

Each dimension of a domain is specified with a range. The domain is the product of all the ranges, that is, all
combinations of their values. The indices are generated in rank order, so the range in the first rank varies the
least. That is, the indices are formed by a series of nested loops, with the first rank the outermost and the last the
innermost. To specify a domain, put the ranges in a list between braces.

area = {0..nrow-1, 0..ncol-1}

defines the bounds of our image, using 0-based indexing. The first rank runs over y (along a column), the
second over x. Loops will match the pixel layout in memory, moving through the linear array. You cannot use
strides with these ranges.

The size of an array depends on the underlying domain. When the domain changes, the array changes. The
domain must be kept in a variable to do this, as we have done above. You cannot change the domain assigned to
an array (although there is a method to access it), but you can change the contents of the domain if it's been
given a name. As we see above, one advantage of this approach is that domains can be shared. If we change
area, all three color planes will grow or shrink accordingly. During the re-size, array elements in the overlap
between the old and new domain specifications are kept and any elements added are initialized to the default of
the data type.

area here is a placeholder. Once we've read in the PNG, we can then set up the Chapel image using a
constructor we add to the class.

class clrimg {

/* members defined above */

proc clrimg(w: int, h: int) {
ncol = w;
nrow = h;
npix = w * h;
/* This automatically re-sizes the arrays. */
area = {0..nrow-1, 0..ncol-1};

}

To use this, we modify the rgb_to_lab () procedure to take a c1rimage instead of an rgbimage. We
instantiate the image, and use the domain to convert each pixel. Since we're now generating the x and y
coordinates from the domain, we need to calculate the xy index for the rgbimage inside the loop. The c1, c2,
and c3 array references take (x,y) as a tuple.

66 COLOR CONVERSION (color) Chapel By Example - Image Processing

proc rgb_to_lab(rgb : rgbimage, ref lab : clrimage) {
lab = new clrimage (rgb.ncol, rgb.nrow);

for (y, %) in lab.area {
const xy = (y * rgb.ncol) + x;
rgbpix_to_lab(rgb.r(xy), rgb.g(xy, rgb.b(xy),
lab.cl(y,x), lab.c2(y,x), lab.c3(y,x));

}

With this framework we'll be able to support different color space conversions by creating a rgbpix_to_hsv ()
or rgbpix_to_yuv () function

We next need to convert the real results to 8-bit. In lab_v1 the valid data range was fixed: if L, A, or B went
outside the defined limits they were clamped before scaling to 0 t/m 255. The range differs for each plane,
however, and other color spaces use different strategies. We will need

1. BOUND - The limits of the data are known. The minimum is offset to 0, the maximum scaled to 255. Values
outside the limits are set to 0 or 255. The minimum and maximum must be specified.

2. DATA - The limits are set to the smallest and largest values in the array. Pixels after scaling will span 0 t/m
255.

3. CENTER - The limits are set to +/- the largest absolute value in the array, putting 0 in the middle. Unless the
minimum is the opposite of the maximum, the pixel values will not cover the full 8-bit range.

4. CLIP - Do no scaling. Values outside the 8-bit range are clipped to 0 or 255.
We'll use an enum to represent these cases.

enum rgbconvert {
BOUND, DATA, CENTER, CLIP

}

For the general framework, we'll want to support which plane to copy to the PNG. If we pick one of C1, c2, or
c3 then we'll populate the RGB planes with the scaled value from the source plane. We'll also allow an ALL
option which will put 1 in R, C2 in G, and €3 in B. The enum to specify this is

enum clrplane {
Cl, C2, C3, ALL
}

A record will store the complete conversion spec

record conversion {

var plane : clrplane; /* which plane to copy to RGB */

var how : rgbconvert; /* how to scale clr to rgb */

var min : real; /* lower limit of bound/clip range */
var max : real; /* upper limit of bound/clip range */

67 COLOR CONVERSION (color) Chapel By Example - Image Processing

The routine that starts the conversion is called display_color ().

proc display_color(clr : clrimage, ref rgb : rgbimage,
spec : conversion) : c_int

For each plane that must be copied to RGB, it calls display_plane () with the source c1rimage array and the
destination rgbimage pointer.

proc display_plane(clr : [] real, rgb : c_ptr(u_char), ncol : int,
spec : conversion) : c_int

This prototype shows how we can pass arrays and, for the C interface, pointers. The image width is necessary,
since it's not stored with the C array and we need it to calculate the xy index. The domain for the Chapel array,
however, is available through the array method c1r.domain. (We do not assume both images have the same
size, but rgb must be the same size or larger of the two.) The return values follow the error code convention of
PNG_read () and PNG_write ().

In other words, display_color () routes the source color plane to the output plane with display_plane ().
Except if all planes are being mapped, it also needs to make a greyscale image by copying the result into the
other two planes using a range over all the pixels in the RGB image.

if ((clrplane.Cl == spec.plane) || (clrplane.ALL == spec.plane)) {
retval = display_plane(clr.cl, rgb.r, rgb.ncol, spec);
if (retval < 0) then return retval;

if (clrplane.Cl == spec.plane) {
for xy in 0.. (rgb.npix-1) {
rgb.g(xy) = rgb.r(xy);
rgb.b(xy) = rgb.r(xy);

}

return O;

}
/* Similarly for C2/G, C3/B. */

display_plane () uses areduction to yield a single value from a set. It has the form
<operation> reduce <iterable>
<operation> is a small set of operators and functions: + and *; s, &&, |, and | |; min, max; and the extrema

with their location, minloc and maxloc. The reduce command is a concise way to find the smallest and
largest color values for the DATA and CENTER scaling.

minpix min reduce clr;

maxpix = max reduce clr;
If we were to write this out, it would like like

var minpix = max(real);
var maxpix = min(real);
for (y, x) in area {

68 COLOR CONVERSION (color) Chapel By Example - Image Processing

if (clr(y,x) < minpix) then minpix = clr(y, x);
if (maxpix < clr(y,x)) then maxpix = clr(y,x);

}

In this snippet we're using the min (<type>) and max (<type>) procedures defined in
modules/standard/Types.chpl that return the limit values for a given type. The rest of the procedure calculates the
scaled color value, then converts it to an uint (8). The conversion is the same as in lab_v1, except for the CLIP
case.

Compile and run the program with

make lab_ v2

bin/lab_v2--inname=bobcat.png —-—-outname=grey_ bobcat .png

If you run both lab_v1 and lab_v2 you can see that the output image is the same.

Program Organization (color_convert.chpl)

Our final program re-organizes lab_v2.chpl, pulling out the color transformations and 8-bit conversions into a
separate module (file), ip_color.chpl, and adding RGB-to-HSV and RGB-to-YUV converters. The
color_convert.chpl program uses this library to transform an input image into a new color space, choosing which
plane to save as a greyscale image.

We don't need any new language features. ip_color.chpl contains both the color conversion library as well as the
C interface. We may wish to separate these in the future, but we expect that every program that will use this
library will want to do immediately convert its input into another color space, so it makes sense to leave them in
the same module. The library adds four new top-level functions, rgb_to_hsv (), rgb_to_yuv (), and
rgb_to_rgb () which convert an 8-bit RGB image into the new spaces (the last function merely copies the
pixels, changing them to reals), as well as a routing function rgb_convert ().

color_convert also does nothing new. It adds command-line configuration constants for the color space and
plane. Inmain () it transforms the color, sets up the conversion spec back to 8-bit, and generates and saves the
image for the requested plane.

To build and run the color conversion

make color_ convert

bin/color_convert —--inname=<file> —--outname=<file> —--space=[LAB|HSV|YUV]
——plane=C[123]

where the enumeration constants are given by name and default to LAB and C1. For example,

bin/color_ convert —-inname=bobcat.png ——outname=bobcat_h.png —-—-space=HSV

Aside: First-Class Functions (color_convert_v1b.chpl, ip_color_v1b.chpl)

The directory CHPL._HOME/doc/rst/technotes contains documentation for Chapel features that are works in
progress and not yet ready to add to the language spec. One of these is support for functions, both as a type and
as something that can be assigned to variables. You'll notice that all the rgb_to_* procedures in ip_color are
the same except for the function call to convert a pixel. We can modify rgb_convert () to show how first-

69 COLOR CONVERSION (color) Chapel By Example - Image Processing

class functions can simplify them.

Chapel places strong restrictions on the functions. They cannot be generic, they cannot belong to a class or
record, and they cannot be overloaded, among others. They cannot refer to non-global variables, although
arguments may be declared with an intent that allows them to be modified. More importantly for us, their
argument lists cannot take non-default intents. Therefore we have to re-work all four conversion functions to
return a triple:

proc rgbpix_to_lab(r : u_char, g : u char, b : u_char) : 3 * real {
var 1, 1_a, 1 _b;
/* convert normally */
return (1, 1_a, 1_b);

}

The function type is formed with the func keyword and a list of the argument types in parentheses. The final
argument is the return type. The prototype of our conversion function is

var fn : func(u_char, u_char, u_char, 3 * real);

You can then assign a procedure name to this variable and then use the variable as the name when calling the
procedure. In rgb_convert (), we'll select the proper conversion routine, then do what all the rgb_to_*
procedures did: create an instance of the destination image and loop through all the pixels, converting each in
turn. Like this

proc rgb_convert (rgb : rgbimage, ref clr : clrimage,
space : clrspace) {
var clrfn : func(c_uchar, c_uchar, c_uchar, 3 * real);
var xy : int;

select space {
when clrspace.LAB do clrfn = rgbpix_to_lab;
when clrspace.HSV do clrfn = rgbpix to_hsv;
when clrspace.YUV do clrfn = rgbpix_to_yuv;
when clrspace.RGB do clrfn = rgbpix to_rgb;
otherwise halt (“unknown colorspace “ + space);

clr = new clrimage (rgb.ncol, rgb.nrow);

for (y, x) in clr.area {
xy = (y * rgb.ncol) + x;
(clr.cl(y,x), clr.c2(y,x), clr.c3(y,x)) =
clrfn(rgb.r(xy), rgb.g(xy), rgb.b(xy));

}
The other edits to ip_color_v1b deleted the four rgb_to_* variants and added rgbpix_to_rgb().

To test this we've modified color_convert_v1b.chpl to use this library. Compile it with:

70 COLOR CONVERSION (color) Chapel By Example - Image Processing

chpl -o bin/color convert_vlb color convert_vlb.chpl ip_color_vlb.chpl \
img png v3.h build/img png v3.o -lpng
or make color_convert_vlb

Run it the same way
bin/color_convert_vlb —--inname=bobcat.png —-outname=bobcat_h.png —-space=HSV

This is just an example of how you can pass around functions in variables. It would be just as legitimate to
move the select into the loop and call the right rgbpix_to_* function, although you would have to duplicate
the argument list for each case.

Chapel also supports unnamed functions called lambdas. You create them when you assign them to a variable.
The lambda can take an argument list and is followed by a block of statements.

var fn = lambda(x : int, y : int, ncol : int) { return ((y * ncol) + x); }

A lambda is evaluated as an expression.

Wrap-Up

In this chapter we've completed our survey of the basic language, including operators and statements and two
additional data structures, enumerations and tuples. We've also seen how Chapel represents domains, the set of
indices that back arrays, and the range specifications that generate them. We've learned:

— Chapel offers the normal arithmetic, logical, comparison, and bit operators. It has a ternary
if..then..else expression and can generate a set of results from an in-line loop.

— Numbers will be implicitly cast to other data types only if no information can be lost; the exception is
that int (64) and uint (64) can implicitly cast to real (64) and complex (128). You can force a
cast by putting : <type> after the expression, although not all casts are allowed. Simple numeric
strings, without base specifiers at the front, can be cast to the numeric types.

— Assignment statements can be compound, combining an operation on the left hand side with the
assignment (a **= bmeansa = a ** b). There is a swap assignment <=>.

— The control statements offer a keyword version if followed by a single statement, or support blocks of
statements between braces ('if <cond> then <stmt>'vs.'if <cond> { <stmts> }'). All
following statements, whether a block or single, form their own scope for local declarations.

— The loop constructs are while..do, do..while, and for. Loops can be broken out of or continued,
and outer loops can be labeled and used as targets of the break or continue.

— A var or const declaration in the do. .while form is available in the while test.
— Enumerations are a set of named constants. The name must be fully qualified in the code,
<enum> . <member>. A config enum variable can be set on the command line with the name of the

member. The values of the constants are available, although you may have to cast them to int if the
language can't recognize them in an implicit cast.

71 COLOR CONVERSION (color) Chapel By Example - Image Processing

— Tuples are anonymous collections of elements, possibly of different types. They may be assigned via
destructuring, where elements on the left hand side are assigned the value in the corresponding position
on the right. Tuples support a few arithmetic and bit operators.

— Ranges are specifications for generating a sequence of numbers. They may have a start and an end, an
increment between steps, and a value that must be present in the sequence. You can also limit the
number of values generated, if that makes a clearer specification. They are proper data structures and
may be assigned to variables. Ranges may be applied to other ranges.

— Domains define an n-dimensional volume. The rank n is the number of dimensions, and each axis may
be a range of numbers or a discrete set of values.

— Domains should be assigned to a variable, and that variable used when declaring an array. This allows
changing the size of the domain and having the array re-size automatically.

— Support for treating procedures as first-class citizens has been added. You can assign procedures to
variables and use the variable as the procedure name when making a call. Anonymous functions or
lambdas are also available.

Now that we can generate greyscale images from our color, we can start doing some image processing. Since
array operations are a key concern for the language, let's look at convolutions, a.k.a. matrix multiplication, next.

Exercises

1. Add the inverse conversions from the LAB, YUV, and HSV spaces back to RGB. You can find the formulas
on the web. You'll find our version in ip_color_v3.chpl, used from the k-Means Clustering chapter onward.

2. Confirm the values of LAB_AMIN, _AMAX, _BMIN, and _BMAX. Because we have a limited 8-bit RGB

space, we can exhaustively run all RGB combinations and find the actual limits. You'll find our approach in
lab_limits.chpl in the Parallel Programming chapter.

Files

A tarball with the programs and image for this chapter is available here. A zip file is here.

A PDF copy of this text is here.

72 COLOR CONVERSION (color) Chapel By Example - Image Processing

pdf/chapel_by_ex_color.pdf
data/chapel_by_ex_color.zip
data/chapel_by_ex_color.tar.gz

GABOR FILTER (gabor)

Introduction

Convolutions are an essential part of low-level image processing. They represent a local neighborhood
calculation: at each pixel we sum a weighted contribution from those surrounding it. The weights are placed in a
kernel, a size x size matrix. Think of a convolution as shifting this kernel over an image. At each point we
multiply the pixels by the kernel values that lie atop (treating weights outside the kernel as 0, ie. these pixels are
ignored) and sum when done. A convolution can be a low-pass filter, emphasizing broad features in the image.
If the kernel elements are all the value 1/(size*size), then we compute the local average value. A Gaussian filter
has a bell-shape. Small low-pass filters are often used to reduce noise in an image, large filters effectively lower
the resolution. A convolution can also be a high-pass filter, emphasizing local changes. These might indicate
edges, or steps in brightness. The Gabor filters are tunable and can belong to either class.

In this chapter we write a convolver with a programmable kernel. If it were fixed, then we could optimize the
program by per-calculating the memory accesses and arithmetic operations, but for this approach we will need to
loop over the kernel. This introduces us to Chapel's concept of subdomains and subranges, and we'll look at a
few different ways to express the computation.

The directory for this chapter is gabor. You'll be using the C routines from the first chapter for reading and
writing, and the color conversion procedures from the second for generating greyscale values. Use make name
to build the programs, where the name is without a .chpl suffix. The bin sub-directory will contain executables,
the build sub-directory intermediate files. The sample image for this exercise is francnotch.png. It has
foreground objects with strong edges at different angles.

The programs developed in the chapter are in a tarball here (as zip file). A PDF copy of this text is here.

Aside: Edge Detectors

There are two types of edge detectors. Differential operators look at the gradient, or first derivative, of intensity
across an image. An edge is found where the gradient is large, either positive or negative. The size of the kernel
determines the breadth of edges that will be marked. Differential operators are usually balanced so that their
response to a uniform field is 0. They tend to be sensitive to noise, although an optimal filter that combines the
differentiation with smoothing can be constructed given a model of the noise. Zero-crossing operators, the
second kind, look at the second derivative of the intensity. For a linear step they yield O at the edge. This point
is more robust as edges get broader; a differential operator will instead see a smaller peak response. They
combine a smoothing response with the differentiator to perform better in noise.

/ \
-02 / 04 / \ -02 \ P

04 / 03 / \ 04 \\
/ / \ \
-06 02 / \ -06 \ /
/ \ \ /
\ /
- - \ /
- s Sy \
-1 — 0 =—— = -1 AN

Simulated edge Differential detector Zero-crossing detector

Simple differential detectors are the Sobol and Prewitt kernels. These are for vertical edges or steps over x.
Rotate them by 90 degrees for horizontal edges or steps over y. The values in the kernels are different

73 GABOR FILTER (gabor) Chapel By Example - Image Processing

pdf/chapel_by_ex_gabor.pdf
data/chapel_by_ex_gabor.zip
data/chapel_by_ex_gabor.tar.gz

approximations of the differentiation.

Sobol Prewitt
-1 01 -1 01
-2 0 2 -1 01
-1 01 -1 01

As an example, let's apply the Sobol operator to two pixel neighborhoods, one with a step and one that's uniform
with noise. Remember that we aren't doing a matrix multiplication, rather a pixel-by-pixel multiplication
followed by a sum. We're ignoring the outer rows and columns as the kernel doesn't full cover them. Usually
the result is compared against a threshold, with pixels whose absolute sum exceeds it being marked as edges. In
the example the threshold is set at 10, and only the pixels at the step are marked.

data kernel result threshold

10 10 10 10 5 5 5
10 10 10 10 5 5 5 . 0 0 -20 -20 0 + +
10 10 10 10 5 5 5 -1 01 . 0 -5 -20 -15 0 .+ +
10 10 10 5 5 5 5 * =202 -> . 0 -15 -20 -5 0 -> + +
10 10 10 5 5 5 5 -1 01 . =5 -20 -15 0 0 .+ +
1010 5 5 5 5 5 -15 -15 -5 0 0 + +
10 5 5 5 5 5 5
10 9 11 10 11 9 8
11 10 11 10 11 10 10 . 2 2 0 -2 -6

9 11 10 12 10 11 9 -1 01 . 1 2 0o -2 =2
12 10 11 10 11 10 12 * -2 02 -> . -1 =2 0 2 2 ->
10 11 10 8 10 11 11 -1 01 . 1 -6 0 6 2

9 10 11 10 11 10 10 1 -3 3 2 -2

11 10 8 10 11 9 10

The filter applied to an image captures the images, although there are many false edges, many are missed, and
some diagonal lines appear in both directions. More sophisticated strategies than a binary threshold are often
used to improve the result. A Canny edge detector, for example, uses a high threshold to select only the strongest
edges as seeds, and then extends them into adjacent pixels that are above a lower threshold.

74 GABOR FILTER (gabor) Chapel By Example - Image Processing

/ \ l 4 /‘,‘ f}
T | S\ N S y
‘ \ b \7’2' /

O}iginal 'image (not prov'ided)

\' "r\ //

w Sobol filter for vertial edges

The Laplacian of Gaussian is a common zero-crossing detector. The Gaussian is a smoothing function.

75 GABOR FILTER (gabor) Chapel By Example - Image Processing

1 —(x2+yz)/252
5 e

G(x,y) =
2ms

This is a normal distribution where s is the standard deviation, assumed equal for both axes, and the mean is 0.
The factor 1/(2*pi*s**2) is to normalize the integral. The Laplacian is the differentiator

2 2
L:a—f2+8—f2
ox oy

Together they give

1 X2+yz—282 e—(x2+y2)/252
2ns4 252

LoG(x,y) =

TN
wors 2O

-0.005

10 5 0 5 10 Heat map of Gaussian function
Gaussian cross-sections along x for given y

0012 ¢

001 ¢

TR
oro 2O

0.008 r

0006 ¢

0.004 r

0002 ¢

-10 5 0 5 10 Heat map of LoG function
Laplacian of Gaussian cross-sections along x

76 GABOR FILTER (gabor) Chapel By Example - Image Processing

For example, for s = 2.0 and an 11x11 kernel, after normalizing the matrix values so they sum to 1.0 and scaling
so that the center value is 100, our kernel becomes

-2 -3
-3 -6
-5 -10
-7 -13
-9 -14
-10 -14
-9 -14
-7 -13
-5 =10
-3 -6
-2 =3
and fors=1.5
-1 -1
-1 -1
-1 -2
-1 -5
-2 -7
-2 -8
-2 -7
-1 -5
-1 -2
-1 -1
-1 -1

-5
-10
-14
-13

-7
-13
-13

0

20

30

-9 -10
-14 -14
-8 -5
20 30
58 77
77 100
58 77
20 30
-8 -5
-14 -14
-9 -10
-2 -2
-7 -8
-14 -14
-5 4
35 62
62 100
35 62
-5 4
-14 -14
-7 -8
-2 =2

-7
-13
-13

0

20

30

20

-5
-10
-14
-13

Notice that the kernels are symmetric, but that they do not sum to 0. This means that the output signal will have
a bias. This can be removed by subtracting a local average. To use a zero crossing detector we compare each
pixel after the convolution with its neighbors. If the signs in a pair differ, then there is a zero between them that

can be marked as an edge.

77

GABOR FILTER (gabor)

Chapel By Example - Image Processing

Laplacian of Gaussian with zero crossings marked

A non-symmetric version of this filter offers some interesting possibilities. If the central region does not form a
dot then the filter will respond to elongated features. If it is not rotationally symmetric, then it responds to
oriented features. The Gabor filter modifies the Gaussian. It first introduces separate scaling parameters
(sigmas) for each axis. If the scales are the same the central region is a dot, but as they grow unequal it distorts
into an oval. Second, it rotates the coordinate plane through an angle; this is just a rigid mapping on the x and y
coordinates. Finally, it multiplies the exponential with a sinusoid with a wavelength and phase offset. This
introduces lobes that can be symmetrically or anti-symmetrically placed along or aside the central axis.

The filter takes five parameters: theta, the angle of rotation; sclx and scly, the sigmas for the exponential;
lambda, the wavelength of the sinusoid (which will be called wavelen in the code since lambda is a reserved
word); and phi, the phase of the sinusoid.

x' = xcos(0) + ysin(0)
y' = —xsin(0) + y cos(0)
Gabor(x,y) = e W/ + W2 cog((2 3w x'[N) + ¢)
where we have dropped the normalization constant.
A heat map shows the strength of the kernel components, with dark being negative, red neutral, and white

positive. These maps show the unrotated filter and at 30 and 60 degrees for the symmetric and asymmetric
cases. Because the sinusoid is a cosine along x, if sclx > scly an angle of 0 degrees is oriented vertically.

78 GABOR FILTER (gabor) Chapel By Example - Image Processing

L
" 4

Symmetric Gabor, theta 0, phi 0 Symmetric, theta 30, phi 0 Symmetric, theta 60, phi 0
Asymmetric, theta 0, phi 90 Asymmetric, theta 30, phi 90 Asymmetric, theta 80, phi 90

Our programs in this section will implement this function and its convolution with an image. In practice we can
reduce the number of parameters. We need scly >> sclx to stretch the response, with sclx = 2.8 being a common
figure for Gaussians and scly being on the order of the 0.5 - 1.5 X the filter size. The size determines the angular
resolution, with 13x13 being the minimum if we want to vary theta by 10 degrees; 23x23 gives the best
resolution before the gains taper off. phi is either 0 for the symmetric case or 90 for the asymmetric (ie. the
cosine becomes a sine). The wavelength is about the size of the filter to detect steps. If it is half or smaller
you'll see a positive and negative lobe on each side of the center line and the filter will respond to thin lines.

The plot_kernel.chpl program generates these heat maps. You might find it helpful for visualizing the kernel,
although we won't discuss it. The logic is fairly straightforward: scale the coordinates to the filter space,
evaluate the filter at each pixel and color code the result. The program takes each of the parameters as
command-line arguments, ie.

plot_kernel —--theta=<degrees> —-sclx=<#> —-scly=<#> ——-wavelen=<#>
—-phi=<degrees>

Reasonable defaults have been provided. The —-outname argument lets you specify the PNG file to create (the
default is filter.png). You can compile the program with

make plot_kernel

The heat maps above were based on a 13x13 kernel drawn/sampled over a 700x700 image, with sclx = 2.8, scly
= 4.0, and a wavelength of 5.0. The last two parameters differ from our preferred values of scly = 6.0 and

79 GABOR FILTER (gabor) Chapel By Example - Image Processing

wavelen = 12.0 and were chosen to demonstrate the kernel's features clearly.

Subdomains and Subranges

In the previous chapter we mentioned slicing and subranges, where you define a second range as a sub-set of a
first. The same can be done for domains. Besides the clarity of intent, the main benefit subdomains offer is the
provable validity of array accesses, which may let us avoid bounds checks or help the compiler with
optimization, although neither is currently done by Chapel.

Just as a subrange is created by putting a second range specification in brackets or parentheses after the base, so
too domains. Provide one range for each rank in the domain. The result is an intersection of the two. Here is
where open-ended ranges, ones without either a start or and end, become useful, as they don't constrain one side
of the base. The result will be a range with one endpoint taken from the base and the other from the second,
whichever end was known.

Say we have a 2D domain representing an image array

Aimg : domain(rank=2) = { 0..ncol-1, O0..nrow-1 };

Let a kernel have a "diameter" of size X size, where size is odd. The radius r = (size-1) /2, which
means that it extends r pixels on either size of a center point (x, y):

Akernel : domain(rank=2) = { x-r..x+r, y-r..y+r }

Then we can form a subdomain of Aimg that is big enough for the kernel. We can do this either by repeating the
subrange

Aconv = Aimg[x-r..x+r, y-r..y+r]
or by using the kernel area to provide the subrange

Aconv = Aimg[Akernel]
Since the second version doesn't repeat the subranges, it's the better choice.
You can declare a subdomain by referencing the parent.

var Aconv : subdomain (Aimg) ;

You can change the indices generated by the subdomain with the domain functions as long as they're also valid
in the parent.

Chapel provides many ways of working with domains, ranges, and arrays since they're such fundamental data
structures. Let's look at examples for each. The source can be found in ex_rangeop.chpl. Compile and run it
with

make ex_rangeop

bin/ex_rangeop

Range Commands

To demonstrate subranges and see the effect of steps, alignments, and counts, we'll start with a base range that is

80 GABOR FILTER (gabor) Chapel By Example - Image Processing

a simple sequence from 1 through 10.
var rngl = 1..10;
We can use a for expression to print the members

writeln("base range ", rngl, " =", for i in rngl do i);
>1..10=123 45678910

If we apply a subrange with an open start to rng1 we effectively change the end point

writeln(rngl[..8], " =", for i in rgbl[..8] do i);
>1..8=123456¢6 1738

Similarly, an open end would only change the start point. A new step applies to the sub-sequence, and a new
alignment can shift the first generated value.

writeln(rngl[2.. by 3], " =", for i in rngl[2.. by 3] do i);
>2..10 by 3 =25 8

writeln(rngl[3.. by 3 align 2], " =", for i in rngl[3.. by 3 align 2] do i);
> 3..10 by 3 align 2 = 5 8

Here the align 2 would make 2 be the first generated value (ie. 2, 5, 8, 11, ...; also 2, -1, -4, -7 ...), which is
incremented by the step until it falls within the start and end points.

If the subrange has no start point, then its alignment is unknown and this propagates to the result. A bad

alignment means the range cannot be used for iteration, and the program will halt with an error message.
Therefore, in this next example we cannot use the for expression to print values, because they cannot be
generated. If we provide the alignment, however, then it works.

writeln(rngl[..8 by 3]1);
>1..8 by 3

writeln(rngl[..8 by 3 align 2], " =", for i in rngl[..8 by 3 align 2] do i);
>1..8 by 3 align 2 =2 5 8

If we provide a count of the number of elements to generate, then this is done on the subrange. The order of the
qualifiers is important, as they are applied from left to right. In the first example we step by 2 through the three
counted elements 3, 4, 5, giving 3 and 5. In the second we step by 2 to the original end point, so 3, 5, 7, 9, and
take the first three of those.

writeln(rngl[3.. # 3 by 2], " =", for i in rngl[3.. # 3 by 2] do 1i);
>3..5=35

writeln(rngl[3.. by 2 # 3], " =", for i in rngl[3.. by 2 # 3] do 1i);
> 3..10 =3 5 7

We can also do addition and subtraction to change the start, end, and align parameters.

writeln(rngl + 2, " =", for i in rngl+2 do i);
>3..12=345678 9 10 11 12

81 GABOR FILTER (gabor) Chapel By Example - Image Processing

writeln(rngl - 2, " =", for i in rngl-2 do i);
>-1..8=-1012345¢6178

Although we haven't said it explicitly, the range bounds can be negative. We'll use this when defining the Gabor
kernel.

Range objects support many methods for adjusting their parameters and testing for membership. The members
themselves are accessible: 1ow the start point, first the first generated element, high the end point, 1ast the
last generated element, st ride the step, alignment the number that must be part of the unbounded sequence,
and length or size for the number of values the sequence will generate.

The member () method tests if a range generates a value or if all values of a subrange are included in the base.

writeln (rngl.member (9));
> true

writeln (rngl.member (11));
> false

writeln (rngl.member (2..5));
> true

writeln (rngl.member (2..11));
> false

writeln (rngl.member(2..));
> false

writeln (rngl.member(..8));
> false

For the methods that adjust the range, let's use another base sequence where we've provided a stride and
alignment.

var rng2 = 1..20 by 4 align 3;
writeln(for i in rgb2 do i);
>3 7 11 15 19

The expand () method adds its argument to the end point and subtracts it from the start. You can see this in
how Chapel prints the range to the left of the equals sign.

writeln(rng2.expand(2), " = ", for i in rng2.expand(2) do i);
>-1..22 by 4 = -1 3 7 11 15 19

The exterior () method creates a new range that begins immediately after the base and whose end point is
shifted by the positive argument. If the argument is negative then the new range lies before the base and the start
point shifts.

writeln (rng2.exterior(3), " = ", for i in rng2.exterior(3) do i);
> 21..23 by 4 align 3 = 23

writeln (rng2.exterior(-3), " = ", for i in rng2.exterior(-3) do i);
> -2..0 by 4 align 3 = -1

82 GABOR FILTER (gabor) Chapel By Example - Image Processing

That is, for a positive argument modifying the base range start . .end we have a new series (end+1) ..
(end+arg), and the stride and alignment do not change. For a negative argument the new series runs from
(start-arg) .. (start-1). We have in effect added the points just outside the base range, as you can see in
the change in the start and end points. Because we have an alignment restriction, though, we generate only one
of the three values.

The interior () method with a positive argument picks that many values at the end of the sequence, or at the
start with a negative argument. That is, the new series becomes end-arg+1..end and start..start+arg-
1, respectively, and again the stride and alignment do not change.

writeln(rng2.interior(3), " = ", for i in rng2.interior(3) do i);
> 18..20 by 4 align 3 = 19

writeln(rng2.interior(-3), " = ", for i in rng2.interior(-3) do i);
> 1..3 by 4 align 3 = 3

As with the exterior example, we're taking the three innermost points at either end but the alignment condition
causes only one of them to be generated.

The offset () method changes the alignment. The argument is added to the current alignment, and the result is
taken modulo the step.

writeln(rng2.offset (3), " = ", for i in rng2.offset(3) do 1i);
> 1..20 by 4 align 2 = 2 6 10 14 18

writeln(rng2.offset (-3), " = ", for i in rng2.offset (-3) do i);
> 1..20 by 4 align 0 = 4 8 12 16 20

For the first example the new alignment is (3 + 3) % 4 = 2, and for the second (3 - 3) % 4 = 0. Although 0 is
outside the start and end values, it is the anchor for the series of step 4.

The translate () method shifts the whole sequence: start, end, and alignment.

writeln(rng2.translate(3), " = ", for i in rng2.translate(3) do i);
> 4..23 by 4 align 2 = 6 10 14 18 22

writeln(rng2.translate(-3), " = ", for i in rng2.translate(-3) do i);
> —-2..17 by 4 align 0 = 0 4 8 12 16

Domain Commands

In general we access the indices that are part of a domain by simply using the domain's name. We can do this in
a for loop or one of its variants (forall, coforall) and the loop will iterate over each index tuple that is part
of the domain. Let's set up a small domain to see this. Again we can use a for expression to print the its
members. You'll see that the second rank varies the most; it is the innermost loop.

doml = { 1..3, 4..6 }
writeln(doml, " = ", for i in doml do i);
> {1..3, 4..6} = (1, 4) (1, 5) (1, 6) (2, 4) (2, 5) (2, 6) (3, 4) (3, 5) (3, 6)

Chapel will automatically iterate a domain over all its values if you provide it as an argument to a function that

takes a tuple to hold its indices. The return value of such a function can be assigned to an array. The argument
needs to be defined either as a tuple, fn (ind : 2*int), or destructured but with the type itself as a tuple,

83 GABOR FILTER (gabor) Chapel By Example - Image Processing

fn((x, y) : (int, int)).

proc domfnl ((x, y) : (int, int)) {
writeln(x, " + ", y, " =", x+y);
return x+y;

}

var arrl : [doml] int;

var arr2 : [doml] int;

arr2 = domfnl (doml);
2 =6

V VV V V V V VvV

R PP WDMDWDDW

+ 4+ + + + + + + +

o U1 & OO0 O 1 U1 & b
I o

g oy OO 00 00 J

writeln ("arr2");
writeln (arr2);
> arr2

vV V VvV
U)

Note that the write functions support a pretty-printer for arrays. All pairs of x and y indices are passed to
domfn1 (although not necessarily in order, since Chapel automatically makes the calls in parallel), and the sum
of the coordinates is assigned to the corresponding element of array arr2.

We said that you cannot use ranges with strides in domains. Instead, you can give the domain itself a stride
using the by keyword. The stride applies to all ranks.

writeln(doml by 2, " =", for i in doml by 2 do i);
> {1..3 by 2, 4..6 by 2} = (1, 4) (1, 6) (3, 4) (3, 6)

Similarly, you can specify the count per range. This takes a tuple for each rank.

writeln(doml # (2, 1), " =", for i in doml # (2, 1) do 1i);
> {1..2, 4..4} = (1, 4) (2, 4)

As with ranges, domains support the expand (), translate (), interior (), and exterior () methods. All
return new domains, which means they can be chained together. They do not necessarily generate subdomains,
however. The arguments are generally tuples that represent the changes along each rank. We'll start by defining
a new base domain before applying them.

var dom2 = { 1..10, 20..30 };
writeln (dom2) ;
> {1..10, 20..30}

84 GABOR FILTER (gabor) Chapel By Example - Image Processing

writeln (dom2.expand(5,3));
> {-4..15, 17..33}

writeln (dom2.expand (5, 3) .expand(-2,-1))

> {-2..13, 18..32}

writeln (dom2.translate(4,5))

> {5..14, 25..35}

writeln (dom2.exterior (2, 3))
> {11..12, 31..33}

writeln (dom2.exterior (-2,-3))

> {-1..0, 17..19}

writeln (dom2.interior (2, 3))
> {9..10, 28..30}

writeln (dom2.interior (-2,-3))

> {1..2, 20..22}

You can find these examples in ex_domainop.chpl. Compile and run them with

make ex_domainop

bin/ex_domainop

Array Commands

The domain underlying an array can be used as an iteration source for loops or iterated operations, as we saw
above. The loops generate the values of the array, not the indices. Use array.domain to get the indices.
Slicing also applies.

Arrays can be operated upon by scalar values, in which case the operation applies at each index. Arrays of the
same size and indices may also be combined or set equal, which copies the values over.

85

var doml = {1..3, 4..6};

var arrl : [doml] int;
var arr2 : [doml] int;
var arr3 : [doml] int;
arrl = 3;

writeln (arrl);

>3 33

>3 33

>3 33

arrl += 5;
writeln (arrl);
> 8 8 8

> 8 8 8

> 8 8 8

arr2(1,4) = 1; arr2(1,5)=2;

GABOR FILTER (gabor)

arr2(1l,6)=4;

Chapel By Example - Image Processing

arr2(2,4) 2; arr2(2,5)=4; arr2(2,6)=8;

arr2(3,4) = 1; arr2(3,5)=8; arr2(3,6)=2;
writeln (arr2);

>12 4

> 2 4 8

>182

arr3 = arrl / arr2;

writeln (arr3);
> 8 4 2
>4 21
> 81 4

arr3 = for (x, y) in arr3.domain do x+y;
writeln (arr3);

>5 617

> 6 7 8

>7 89

We can declare a variable as an alias to an array using the reindex () method. The domain declaration for the
alias is mapped to the domain of the source, and must be smaller than the source. For example, if we want to
shift a kernel centered about 0 to a point (x,y) in an image we can do

var kernel : [-r..r, -r..r] real;
var shift = kernel.reindex({y-r..y+r, x-r..x+r});

The indices for shift are now centered about (%, y). The re-indexed domain must have the same number of
elements as the range provided as the argument. Here we're swapping the x and y coordinates because our image
arrays are in this order.

Just to emphasize: if we start with the domain behind an array and take slices we are sure to have valid indices.
You can go out of bounds if you manually calculate them.

You'll find these samples in ex_arrayop.chpl. Compile and run them with

make ex_arrayop

bin/ex_arrayop

Gabor Filters (gabor_v*.chpl)

We're now ready to code our filter. We'll try several different approaches to looping and defining subdomains to
see which feels best.

To facilitate working with subdomains, we've added an extra constructor to the c1rimage class. You'll find it in
ip_color_v2.chpl. This version takes an existing image and copies the domain but not the data. This way we'll
be sure that both access the same underlying representation. We'll use it so the input image and convolution
result have the same domain. This constructor overloads the previous, and Chapel will call the right version
depending on whether you provide two integers as arguments, the width and height, or another image.

class clrimage {
var ncol : int; /* width (columns) of image */

86 GABOR FILTER (gabor) Chapel By Example - Image Processing

var nrow : int; /* height (rows) of image */

var npix : int; /* number pixels = w * h */

var area : domain (rank=2); /* array bounds by x and y */

var cl : [area] real; /* first color plane (L, H, Y) */
var c2 : [area] real; /* second color plane (A, S, U) */
var c3 : [area] real; /* third color plane (B, V, V) */

proc clrimage(w : int, h : int) {
ncol = w;
nrow = h;
npix = w * h;
/* This automatically resizes the arrays. */
area = {0..nrow-1, 0..ncol-1};

proc clrimage (orig : clrimage) ({
ncol = orig.ncol;

nrow orig.nrow;

npix orig.npix;

area = orig.area;

}

The general flow of the program is the same for all versions. It starts by sanity checking the command-line
arguments and converts the two angle parameters in degrees to radians. These are constants set at runtime. It
then reads the PNG file and generates a greyscale image using either the LAB or YUV space. It next runs the
Gabor filter, creating the size x size kernel and convolving it across the image. Finally it scales the result back to
an 8-bit image for display and writes it to disk.

The only procedure that changes between the versions is run_gaborfilter ().
Since our image domain is in (y,x) order we also swap the indices in the kernel.

proc gabor_kernel (theta : real, sclx : real, scly : real,
wavelen : real, phi : real, kernel : [] real) {
for (y, x) in kernel.domain ({
/* rotated x, y coordinates */
const xrot = (x * cos(theta)) + (y * sin(theta));
const yrot = (-x * sin(theta)) + (y * cos(theta));
/* square of coordinate after scaling */
const x2scl = (xrot * xrot) / (sclx * sclx);
const y2scl = (yrot * yrot) / (scly * scly);

kernel (y, x)
exp (- (x2scl + y2scl) / 2.0) * cos((2.0 * pi * xrot / wavelen) + phi);

}

You'll notice reading the source code that we're using the Time module. This provides timers with up to

87 GABOR FILTER (gabor) Chapel By Example - Image Processing

microsecond resolution for testing how long parts of the program take to run. We'll use the times to compare the
five approaches in the Performance section. You simply call start () and stop () methods on each timer, and
use elapsed (TimeUnits.milliseconds) to get the interval between them.

Compile the programs with
make gabor_v[123456]

The program takes many possible command line arguments:

——inname=<file> PNG file to read

——outname=<file> PNG file to write result to

——space=[LAB|YUV] which color space to use for greyscale conversion
——size=<int> kernel diameter, must be odd

—-—theta=<real> rotation angle of filter, in degrees

——sclx=<real> scaling parameter for x axis

—-—scly=<real> scaling parameter for y axis

—-—wavelen=<real> wavelength of sinusoid

——phi=<real> phase offset of sinusoid, in degrees

Only --inname and ——outname must be provided, the others have default values. A typical run with the
default filters would be

bin/gabor_vl —--inname=francnotch.png --outname=gl.png

By the way, since there are so many parameters, Chapel has the option of placing them in a file and using it from
the command line. Say config.vals contains

size=15
theta=45.0
wavelen=14.0

Then you can pass the file with the - f flag, not needing to put these three on the command line.

bin/gabor_vl -f config.vals —--inname=francnotch.png --outname=gl.png

88 GABOR FILTER (gabor) Chapel By Example - Image Processing

Original image francnotch.png

.
:
)\ :
’

Gabor size=21 wlen=20, blurred, stronger response

89 GABOR FILTER (gabor)

Default Gabor filter

.
\}

Gabor, scly=2.8, with harper features

¢ - /\n ¥ "
: T
'»"‘y;:‘ AT (» \ v
"“K " » a'l.. ~ “x\
\ : l 'f"!
l;‘m ‘i ; A\' :‘

Gabor phi=0, with DC offset

Chapel By Example - Image Processing

Indexing with Offsets (gabor_v1.chpl)

Our first convolver is a straightforward sum using index arithmetic to center the kernel over each pixel. We
define two domains. The first is for the kernel

const r = (size - 1) / 2;
const Akern : domain(2) = { -r..r, -r..r };
var kernel : [Akern] real;

where r is the radius or half-width and the domain is centered at (0, 0). The second is for the interior of the
image so that the kernel falls completely inside.

const Ainside = img.area.expand(-r, -r);
where img is the greyscale input. We could have also used a subrange

const Ainside = img.area[r..img.ncol-r-1l, r..img.nrow-r-1];
but the expand method better explains the intent of what we're doing.
We set up the kernel with

gabor_kernel (theta=theta, sclx=sclx, scly=scly, wavelen=wavelen, phi=phi,
kernel = kernel);

which populates the kernel array following the Gabor function definition.
We initialize the result to 0 using an implicit iteration over the array's bounds
gabor.cl = 0.0;

Next we have a nested loop. The outer for covers each pixel in the inner subdomain, while the inner covers
each kernel element and the underlying pixel. The coordinate and kernel indices are in the correct order both in
the loops and to the arrays.

for (y, x) in Ainside {
for (kj, ki) in Akern do
gabor.cl(y,x) += img.cl(y+kj,x+ki) * kernel(kj, ki);
}

Because we can use negative values in our ranges and have centered the kernel at (0,0), the source pixel in c1 is
just the center pixel shifted by the kernel index. We only use the c1 plane because both the LAB and YUV
transforms put the luminance image there.

One danger of this approach is that we can generate illegal indices for img. c1 if the kernel ever goes outside the
image. In other words, we depend on defining Ainside correctly. If we contracted img.area by less than r,
then either x+ki or y+kj would go out of bounds, and the program would crash. We'll next use subdomains to
make sure this can't happen.

Indexing with Zippers (gabor_v2.chpl)

Our second version will slice the image area by the kernel at each pixel before starting the inner loop. This

90 GABOR FILTER (gabor) Chapel By Example - Image Processing

guarantees that the indices will be valid. Our definitions for the Akern and Ainside domains don't change, nor
does the kernel array definition. Using Ainside here doesn't mean we're trying to avoid going out of bounds, but
that we don't have to worry about partial overlaps.

We'll set up a separate subdomain for the convolution as a variable since we'll be changing it at each pixel
var Aconv : subdomain (img.area);

We need two sets of indices when we do the multiplication in the inner loop, one in the image and one in the
kernel. The way to combine multiple iterators into one is with a zipper. It takes any number of ranges or
iterators and with each step of the loop gets the next value of each, returning all in a tuple. Each component
must have the same length.

zip (Aconv, Akern)

will produce one matching index (which is a tuple) from each domain, and then another, and so on. The zipper
generates a tuple of two tuples, so we'll use destructuring to pull out the indices.

First we need to define the Aconv subdomain for each pixel. This is just a slice of the image area. Then we
generate the coordinates and indices and carry out the multiplication.

for (y, x) in Ainside {
Aconv = img.arealy-r..y+r, x-r..x+r];
for ((yc, xc), (kj, ki)) in zip(Aconv, Akern) do
gabor.cl(y,x) += img.cl(yc,xc) * kernel (kj, ki);
}

Although it seems that we can still get the Aconv subdomain wrong, this is actually safe. We are no longer
doing arithmetic on the array indices and slicing guarantees that Aconv is indeed a subdomain and that (xc, yc)
will always be in bounds. We do have to use Ainside because if the kernel would overlap pixels outside the
image then the sliced area would have a different size than Akern and the zipper would fail.

Indexing with Translations and Zippers (gabor_v3.chpl)

The third version replaces the Aconv area with a translation of the kernel to the new pixels. Remember that
translations create new copies of the domain, so they don't affect the original. We then zipper the two domains
together so that pixel coordinates match the overlying filter, multiply, and add.

for (y, x) in Ainside {
for ((yc, xc), (kj, ki)) in zip(Akern.translate(y,x), Akern) do
gabor.cl(y,x) += img.cl(yc,xc) * kernel (kj, ki);
}

Reductions and Intermediate Results (gabor_v4.chpl)

The fourth variant starts with the zipper of the second. You may remember back in the beginning of this chapter
we said that a convolution was a multiplication of every pixel with its kernel element, followed by a sum of
those products. This is a reduction, and we'll see more of them in the next chapter when we talk about parallel
programming. A reduction takes a set of values and returns one; in this case, a sum. The reduce command is
an expression with the form

91 GABOR FILTER (gabor) Chapel By Example - Image Processing

<operation> reduce <data>

This variant splits the calculation into these two steps. It uses the same framework as the second variant, with
Aconv, and defines an intermediate array to hold all the products

var prod : [Akern] real;
Our inner loop will populate this array, and once it's done we perform the reduction.

for (y, x) in Ainside {
Aconv = img.arealy-r..y+r, x-r..x+r];
for ((yc, xc), (kj, ki)) in zip(Aconv, Akern) do
prod(kj, ki)
gabor.cl (y, x)
}

img.cl(yc,xc) * kernel (kj,ki);
+ reduce prod;

We shouldn't expect this to be the fastest variant, because the reduction is a second pass through the kernel.
However, Chapel will automatically perform it in parallel.

Array Slicing (gabor_v5.chpl)

In the fifth version we'll use array aliasing to shift the indices of the kernel array so it aligns with the image grid.
We can then address the kernel with image coordinates. The domain and array definitions are the same as with
gabor_v1.

We'll define a variable inside the loop with the alias.

for (y, x) in Ainside {
const ref shifted = kernel[Akern] .reindex({y-r..y+r, x-r..x+r});
for (kj,ki) in img.area[shifted.domain] do
gabor.cl(y,x) += img.cl(kj,ki) * shifted(kj,ki);
}

In effect the alias appears to move the kernel above the destination pixel. Notice that we're able to use the kernel
indices for the image array. We first tried doing this by shifting the domain using translate (), but the
problem is that that's a "translation by", that is, an incremental shift in the ranges from the previous position.
Since we can't be sure what our previous pixel was, we would need to do some math on the existing range
compared to the desired to get the delta. What we would really like is a "translation to" method.

Array Multiplication and Reduction (gabor_v6.chpl)

For the final version we'll try to avoid array indices altogether to do the multiplication. As with the previous
version we create an alias called shifted for the kernel that is centered on the current pixel. We will also slice the
pixel array over the same area. Since the two arrays now are aligned, we can multiply them directly, letting
Chapel iterate over both domains element by element. We'll then do a reduction on the result.

for (y, x) in Ainside {
const ref shifted = kernel[Akern].reindex({y-r..y+r, x-r..x+r});
const overlay = img.cl[y-r..y+r, x-r..x+r];
gabor.cl(y,x) = + reduce (shifted * overlay);

92 GABOR FILTER (gabor) Chapel By Example - Image Processing

Defining overlay as a subdomain of c1 using shifted does not compile

const overlay = img.cl[shifted]; /* no good */

Performance

If you've been running these programs as we go along, you will have noticed that the run times vary
dramatically. The table gives the average time in milliseconds for the key routines.

rgb_convert run_gaborfilter display_color

vl 397 15209 79 index math

v2 398 36415 79 domain + zipper

v3 398 35990 79 translate + zipper
v4 399 56795 79 zipper + reduction
v5 398 20469 80 array alias

v6 398 53966 79 array multiplication

These runs were made on the francnotch.png image with the default parameters. The consistency of the LAB
conversion at the start and 8-bit conversion of the results gives us confidence in these measurements, as these
routines don't change between program versions.

The preliminary conclusion, without going deeper into the compiled code (which is beyond our goals for this
exercise), is that zippering iterators hurts performance and that the reductions in gabor_v4 and gabor_v6 are
especially costly, despite Chapel doing it internally in parallel. The extra domain created in _v2, compared to the
translation in _v3, has been optimized away, leaving the zipper as doubling the time to do the convolution. The
reduction adds another 50% to the time. The simplest access pattern of using a single set of indices and
offsetting them into the image array, either directly by calculation in gabor_v1 or indirectly by array aliasing in
gabor_vb, is best.

The Chapel compiler does have a --fast flag that turns off runtime safety checks such as array bounds. If you
re-compile the programs with these programs using 'make CHPLFLG=--fast all’, the results are dramatically
faster. You can also set the environment variable CHPL_FAST to any non-empty string. This will cause the
compiler to use the --fast flag for any compilation.

rgb_convert run_gaborfilter display_color = improve base

vl 278 207 6 73 X
v2 278 2346 6 16
v3 282 2249 6 16
v4 278 3344 6 17
V5 278 644 6 32
v6 279 3541 6 15

That's a speed-up of the run_gaborfilter () routine by one or two orders of magnitude! As a check, the

resulting images do match those generated without the --fast flag — we haven't corrupted the operation of the
program. The array aliasing in _v5 hasn't helped as much as the direct access in _v1, but these two are 4 to 5

93 GABOR FILTER (gabor) Chapel By Example - Image Processing

times faster than the zipper and reduction variants. Again we see a 50% penalty for the reductions, and little
difference between the zippers.

We're still new to the language so figuring out what is happening here — if we are seeing any optimizations from

subdomains, if we're using subdomains properly, and how to improve the run time — isn't something we can do
yet. It would be nice if Chapel, with its support for subdomains, could get closer to the raw performance without
the compiler flag.

Wrap-Up

In this chapter we've used a convolution example, an area multiply followed by sum, to talk about subranges,
subdomains, and array operations. We've looked at six different implementations of the convolver using
arithmetic on array indices, subdomains to generate guaranteed correct indices, a multiply-and-reduce approach,
and array aliasing. The direct addressing schemes are the fastest. We've learned:

— A subdomain should be used because it is provably a subset of the base domain.

— Ranges, domains, and arrays support slicing, which is using a second range to sub-sample the original.
Slicing defines a subdomain.

— Ranges and domains support expanding//contracting and translating their bounds, and generating
elements in the exterior just outside the range or in the interior.

— Domains and arrays can be passed as arguments to scalar functions, including built-in operators, or used
with other iterators. Chapel will automatically iterate the function over each element of the domain or
array.

— Array aliasing is a re-mapping of the indices of an array using the reindex () method. With it we can
shift a kernel about an image.

If you monitored the programs as they ran, you noticed that they were all serial. We can speed up the
performance by taking advantage of Chapel's parallel programming support, which we'll look at next.

Exercises

1. Generate a heat map for a Gaussian and Laplace of Gaussian filter. Define a grid of say 50 pixels per unit in
the filter space. Calculate the filter function for each x, y and map it to RGB channels. For example, a heat map
that runs from block through red and yellow to white is

r = 2%t g =2* - 0.5 b=2t-1

where t, the function value, lies between 0 and 1.0. The colors are clipped at 0 and 1, then scaled to an 8-bit
range. Store each in an rgbimage and save as a PNG. (plot_kernel.chpl contains our solution for the Gabor
filter and was used for the figures for this chapter.)

2. Write a Laplacian of Gaussian edge detector. Either save the convolution result as a PNG and highlight values
near mid-scale, ie. near 0, or pass the pixels through a threshold marking only those that have a different sign
than their neighbor (implying that a zero lies between).

3. An integral image I is one where the value at a pixel (x, y) is the sum of all pixels with smaller coordinates, ie.

94 GABOR FILTER (gabor) Chapel By Example - Image Processing

ZX_ Z , image(x',y")

This allows us to quickly calculate sums over areas. For example, if we want to average in a 5x5 square about a
pixel, then we would do

(I (x+5,y+5)-I(x-5,y+5)-I(x+5,y-5)+I(x-5,y-5)) / 25
Write a library routine to generate the integral image, leaving it in a clrimage.

4. The asymmetric (phi=0) Gabor filter gives a large background signal. Write a high-pass filter to remove it.
What remains?

Files

A tarball with the code and image for this chapter can be found here. A zip file is here.

A PDF version of this text is here.

95 GABOR FILTER (gabor) Chapel By Example - Image Processing

pdf/chapel_by_ex_gabor.pdf
data/chapel_by_ex_gabor.tar.gz

PARALLEL PROGRAMMING (gabor_par, lab_limits)

Introduction

Chapel offers language support for task-driven and data-driven parallelism. In task parallelism you define
actions that can be done independently. These get started in separate threads and synchronization variables
control the flow between tasks. For data parallelism you specify a chunk of work to be done and Chapel splits it
up into smaller sets, executing each separately. This is often followed by a serial step to combine the individual
results, the well-known map-reduce technique, where map describes applying a function to data in parallel and
reduce collapses the results.

We have two examples that will serve as good, reasonably simple introductions to these two techniques. We
often want to run Gabor filters as a bank, changing the angle of rotation but otherwise running the same filter on
the same data. Each filter runs independently; this is a good fit for task parallelism. The second exercise of the
Color Conversion chapter asked you to evaluate the L*A*B* conversion for all possible RGB combinations,
256*256*256 = 15,777,216 data points, to find the limits of the transform. We want to evaluate the same
rgb_to_lab () function at each pixel, and then collapse the results to a single minimum or maximum: data
parallelism.

The directory for this chapter is parallel. You'll be using the C functions for reading and writing PNG images
in img_png_v3.c and img_png_v3.h, and the color library ip_color_v2.chpl. Use make name to build the
programs, leaving off the '.chpl' suffix. Executables get placed in the bin sub-directory, intermediate files
(which you should never have to look at) in build. The image for this chapter is francnotch.png, the same one
used for the Gabor filters.

The programs and image for this chapter are here (as zip file). A PDF version of the text is here.

Data Parallelism (lab_limits)

The basic Chapel statement for operating on data in parallel is foral1. As with for, if followed by do it takes a
single statement to execute on the data, otherwise braces allow for a block of statements. Chapel controls how
the iteration is split: there may be a separate task for each iteration, they may be grouped, or it may even execute
completely serially. The statements after the foral1 will only be executed when all iterations are done.

Like for, forall can be used as an expression, returning a collection of values. You may not break out of a
forall, nor return.

Conceptually you can think of the body of the loop forming a procedure that can be called in a separate task.
Any variables from outside the loop are passed as arguments to that procedure. This isolates it from the world
outside the scope of the loop, preventing race conditions. Normally this argument list is without any intents, ie.
all variables except arrays and the synchronization types we will talk about with task parallelism are passed as
const in;the others have type ref. You can change the intent by adding a with clause to the forall

forall (y,x) in img.area
with (ref sum : real, ref cnt : int) {

}

You cannot use the out or inout intent, as these can cause data races (as can assigning to a ref).

96 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

pdf/chapel_by_ex_parallel.pdf
data/chapel_by_ex_parallel.zip
data/chapel_by_ex_parallel.tar.gz

Because arrays are passed by reference, you need to ensure that accesses do not overlap between different
iterations. Chapel will not detect these. If we're doing a column sum with

var colsum : [0..ncol-1] int;
forall y in 0. .nrow-1 do
for x in 0. .ncol-1 do

colsum[x/2] += img(y,x);

both even and odd columns get written to the same array value, ie. x/2 rounds to 0 for x = 1 and there will be a
race at colsum[0]. If you swap the loops, putting x in the foral1, then you may also not be safe because the
range may split so that x = 0 and x = 1 are in different tasks. It would be safe to use the outer loop index
directly, without alteration so that no accesses could collide. Any inner loops are run serially, so it doesn't make
sense to embed foralls.

As we've said a couple times, the process of turning these intermediate results into a single value is called a
reduction. You have a limited number of operators that can be applied: addition + and multiplication *, logical
and &¢& and or | |, bit-wise and &, or |, and xor ~, and min and max. The format of the reduce command is

<operator> reduce <iterator>

If you need the partial results as you go along, use scan instead of reduce. Scan returns an array of the same
size as what it iterates over, where each value is the cumulative sum of values to that point.

There are two other operators for reduce and scan: minloc and maxloc. These take a zipper for the iterator
with two ranges, one the data for which we want the minimum or maximum value, the other a “name”. (What
we would really like is a version that uses a domain or range and just returns the indices at the extreme value,
without the zipper.) The reduction returns a tuple with the minimum or maximum and the corresponding
element from the names list.

Consider two examples of (ab)using reduce and scan. The first populates a 1000x1000 image with the square of
the distance of the pixel (ie. x**2 + y**2) at each point.

var imgl : [0..999, 0..999] int;
forall (x,y) in imgl.domain do imgl(x,y) = (x**2) + (y**2);

It then fills a column sum array in parallel using forall. We use the domain .dim () method, which takes as
argument the rank index, to extract the domain range. The domain's first rank is run in parallel, and since the
column sum depends on this index the addition is safe. These two loops are equivalent:

var colsumA : [imgl.domain.dim(1l)] int;
forall x in imgl.domain.dim(1l) do
for y in imgl.domain.dim(2) do
colsumA (x) += imgl(x,y);

or forall (x,y) in imgl.domain do
colsumA (x) += imgl (x,Vy);

Reducing this sums all 1,000,000 pixel values.

var grandsum = + reduce colsumA;
writeln("grandsum ", grandsum);
> grandsum 665667000000

97 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

We can actually write this as a one-liner without using the colsuma storage. We use a reduce to do the column
sum by providing the column as a fixed value in the slice. Wrapping this in a foral1l generates a collection of
these sums, one for each column, which the outer reduce then collapses to the grand total. This should match
the value we just got.

var grandsum2 = + reduce (forall x in imgl.domain.dim(1l) do

+ reduce imgl[x,imgl.domain.dim(2)]);
writeln ("grandsum2 ", grandsum2) ;
> grandsum2 665667000000

The second example uses scan to generate the solution to Exercise 3 of the Gabor Filter chapter, creating an
integral image. Scan produces an array with an incremental sum along one axis. To declare an array of arrays,
use separate brackets, one for each rank. First we populate a small test image

var img2 : [0..4, 0..4] int;

forall (i, j) in img2.domain do
img2 (i, 3j) = (i*5) + j;

writeln (img2) ;

>012314

567 829

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

vV V VvV V

Then we declare storage for the results of the scan, an array with the same number of columns and rows but split.
We use scan to get the cumulative sum, element by element, of each column. We'll hard-code the ranges to
keep things short, rather than using domain.dim().

var colsumB : [0..4][0..4] int;

forall j in 0..4 do colsumB(j) = + scan img2][0. .4, j]
for j in 0..4 do writeln(colsumB(j));

5 15 30 50

7 18 34 55

9 21 38 60

11 24 42 65

13 27 46 70

vV V. V Vv V
w» W bR o

We need the loop to print the array or Chapel will print it as a 1D list on one line. Note that the values along
each row are the cumulative sum of the corresponding column. Because the scan proceeds along a column, it
stores the result in rows; we need to transpose the matrix.

forall j in 0..4 do
for i in j+1..4 do
colsumB[i] [j] <=> colsumB[j][i];

Now if we do another scan in the opposite direction we get the sum of all those with smaller indices. This is the
integral image.

var intimg : [0..4][0..4] int;
forall i in 0..4 do

98 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

intimg(i) = + scan colsumB[i] [0..4];
for i in 0..4 do writeln(intimg(i));
>013 6 10
> 5 12 21 32 45
> 15 33 54 78 105
> 30 64 102 144 190
> 50 105 165 230 300

You'll find this example in ex_datapar.chpl. Compile and run it with

make ex_datapar

bin/ex_datapar

By the way, Chapel provides a shortcut for forall statements. You can put the everything except the forall
in square brackets before a single statement to iterate over. The first loop above to initialize img1 could have
been written

imgl = [(x,y) in imgl.domain] (x**2) + (y**2);

Limits Found in Serial (lab_limits_ser)

For our initial, serial solution to Exercise 2 of the Color Conversion chapter, we choose to track the extreme
values for each color plane and their RGB "position" as we cycle through all the combinations. The code is
straightforward but repetitive:

var 1, 1_a, 1 b : real;
var lmin = max(real);
var lmax = min(real);
var lminpos, lmaxpos : 3*int;
/* Similarly for A, B. */
lmin = max(real);
lmax = min(real);
for r in 0..255 {
for g in 0..255 {
for b in 0..255 {
rgbpix_to_lab(r : c_uchar, g : c_uchar, b : c_uchar, 1, 1_a, 1 _b);
if (1 < 1min) {
lmin = 1;
lminpos = (r, g, b);
}
if (lmax < 1) {
lmax = 1;
lmaxpos = (r, g, b);
}
/* Similarly for A, B. */

99 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

1_aand 1_b are used for the A and B planes to avoid confusion with 'b'lue. At the end of the loop we just print
the minimum and maximum values and their position:

(rpos, gpos, bpos) = lminpos;
writef(" L %7.2dr (%3i %3i %3i)", 1lmin, rpos, gpos, bpos);
(rpos, gpos, bpos) = lmaxpos;
writef (" - %7.2dr (%3i %3i %3i)", 1lmax, rpos, gpos, bpos);

(A quick aside about the formatting codes for writef (). The function is similar to C's print £ (), except that
the letter codes per type differ: %i int, %u uint, %r real, s string. %m for imag, and %z complex. x
before an integer code prints in hexadecimal, b binary, and o octal. d before a real or imaginary prints the
number in decimal format, e forces exponential, and otherwise writef () picks the most compact. More details
are in the modules/standard/IO.chpl file.) We chose to deconstruct the position tuples before printing;
alternatively, we could have done

writef(" L %7.2dr (%3i %3i %3i)", 1lmin, lminpos(l), lminpos(2), lminpos(3));
The for loop is a serial command. Changing this is what's needed to have work done in parallel.
Compile and run this with

make lab limits_ser

bin/lab_limits_ser

The program takes no command-line arguments. As a check, it first prints the white point to confirm L=100.0,
A=B=0.0. If you monitor your CPU usage, you'll see that the program operates serially on one core.

Over RGB cube

L .06 (& © @) - 100.80 (255 255 255)
&4 -128.15 [© 255 @) - 182.46 (O 0 255)
B -155.36 (©@ @ 255) - 156.20 (255 255 @)

Output from the LAB limits program

Parallelism with Local Updates (lab_limits_parv1l)

Our first parallel takes the outer for loop and changes it to foral1l. This causes the compiler to complain about
all the variables the loop uses that are declared outside the loop. To fix this, we'll replace the scalars we used to
track the extrema and their location for each plane with arrays. We'll store the limits per r, the color we use in
the forall loop, so there is no problem accessing each value (within a parallel task r is constant).

var lmin, lmax : [0..255] real;

var lminpos, lmaxpos : [0..255] 3*int;

/* Similarly for A, B. */

lmin = max(real);

lmax = min(real);

forall r in 0..255 {

for g in 0..255 {
for b in 0..255 {

var 1, 1_a, 1_b : real;
rgbpix_to_lab(r : c_uchar, g : c_uchar, b : c_uchar, 1, 1_a, 1_b);
if (1 < lmin(r)) {

100 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

lmin(r) = 1;
lminpos(r) = (r, g, b);

}
if (lmax(r) < 1) {
lmax(r) = 1;
lmaxpos(r) = (r, g, b);
}
/* Similarly for A, B. */

}

To get the absolute extrema we reduce over the arrays. We want the value of 1 [min|max]pos corresponding to
the minimum/maximum, and zip the value array with the position to extract the location.

(limit, (rlim, glim, blim)) = minloc reduce zip (lmin, lminpos);
writef(" L %7.2dr (%3i %3i %3i)", limit, rlim, glim, blim);
(limit, (rlim, glim, blim)) = maxloc reduce zip(lmax, lmaxpos);
writef (" - %7.2dr (%3i %3i %3i)\n", limit, rlim, glim, blim);
/* Similarly for A, B. */

Compile and run this with

make lab_limits_parvl

bin/lab_limits_parvl

If you monitor your CPU you should see multiple cores in use. The run time will also decrease.

Parallelism with Per-Pixel Storage (lab_limits_parv2)

The second version is conceptually cleaner. Rather than tracking intermediate values for each pass of the
parallel loop, we store all the points and then do a global reduce at the end to find the extrema and their position.
In effect we're doing an LAB conversion on a 256*256*256 image, without using the c1rimage framework.
This costs memory to store the LAB values at each RGB point, and would not be practical for large data sets.

We'll define a domain cube for our RGB volume, and three arrays to hold the converted colors. The loop to
populate the arrays is simple

const cube : domain(rank=3) = { 0..255, 0..255, 0..255 };
var 1, 1_a, 1 b : [cube] real;

forall (r,g,b) in cube do
rgbpix_to_lab(r : c_uchar, g : c_uchar, b: c_uchar,
1(r,g,b), 1_a(r,g,b), 1 _b(r,g,b));

Since each array element is only written by one r, g, b combination, this is safe from race conditions.
The reduction is also simple

(limit, (rlim, glim, blim)) = minloc reduce zip(l, cube);

101 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

writeln(" L %7.2dr (%3i %3i %3i)", limit, rlim, glim, blim);
(limit, (rlim, glim, blim)) = maxloc reduce zip(l, cube);
writeln(" - %7.2dr (%3i %3i %3i)\n", limit, rlim, glim, blim);
/* Similarly for A, B. */

Compile and run this with

make lab_limits_parv2

bin/lab_limits_parv2
The output will match the other two versions.

Performance

Timing results from 10 runs give

lab limits_ser 6.89 +/—- 0.01 s
lab_limits_parvl 2.98 +/- 0.02 s improvement to serial: 2.3x
lab_limits_parv2 11.51 +/- 0.03 s degradation to serial: 0.6x

The programs were compiled without the --fast flag. The small standard deviations show good repeatability.
All four CPU cores were used for the two parallel results. The whole-image reductions in _parv2 dominate the
performance; you can see the pause between the printing of each limit. The code is certainly simpler than in
_parvl, but it comes at a cost of extra memory and run time. The _parv1l improvement over the serial version is
smaller than we might expect; typically four threads give a speed-up of 3.0 - 3.5 X. In comparison to the 1.11
(April 2015) release, the parallel versions have slowed by 10-15% whereas the serial version hasn't changed.

If we insert timers and look at the cost of the forall loop and the reductions we find (values in ms)

forall reduce
lab_limits_parvl 2956 2
lab_limits_parv2 2704 8680

Doing the extra work in the loop in _parv1 adds 10% to the timing, but eliminates the cost of the reduction.
Note that there are six reductions in either program, so it is taking more than a second to do each over the whole
cube. This is despite the reductions themselves being done in parallel — each core remains occupied for the run
of _parv2.

Task Parallelism (gaborbank)

Chapel provides three statements to define and launch tasks. The body of each is wrapped in a function, much as
forall does, with externally declared variables being provided as arguments to that function. The begin
statement takes a single statement or block and executes it in a "fire-and-forget" fashion. Chapel starts the task
in the background and does not wait for it to finish. The cobegin statement takes several statements and
executes each as a task, waiting until all have finished. The coforall statement treats its body as a task that is
called for every iteration. Unlike a forall loop that may or may not split its interactions into separate tasks, the
coforall will do so. Each of these keywords can be followed by 'with (<argument 1ist>)'to give non-
default intents to the outside variables, just like forall.

begin run_gaborfilter (img, size, theta, sclx, scly, wavelen, phi_rad);

102 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

runs a Gabor filter asynchronously.

cobegin {
run_gaborfilter (img, size, 0, sclx, scly, wavelen, phi_rad);
run_gaborfilter (img, size, pi/2.0, sclx, scly, wavelen, phi_rad);

}

runs two filters in orthogonal directions in separate tasks. Whether these tasks run in parallel or serial depends
on the computing resources available.

coforall theta in 0..135 by 45 do
run_gaborfilter (img, size, DEG2RAD (theta), sclx, scly, wavelen, phi_rad);

runs four filters in four separate tasks. As with the other for variants, do is used if there is only one statement in
the loop body; otherwise, use braces around the block.

A cobegin can be used when you have a known number of tasks to run in parallel when you're coding. A
coforall is used when the amount is indeterminate. We'll use coforall in the gaborbank program, but to
give an example of cobegin, let's try writing a parallel sort. The QuickSort algorithm works recursively
through an array. At each step it picks an element and splits the array into two, those values that are smaller and
those that are bigger. This is called partitioning the array and its result is that the picked element has been placed
correctly but the sub-arrays to either side are still unsorted. So, we recur on each of those — and this can be done
in parallel. The top level looks like:

proc quicksort(data : [] real) {
var g : int; /* index of pivot */

q = partition(data);
cobegin {
quicksort (datal[..g-1]);
quicksort (data[g+l..]);

}

which says we find the pivot point (which places the g'th biggest element at that index) and then recur on the
sub-arrays formed by the slices. This recursion happens in parallel thanks to the cobegin.

ex_quicksort.chpl implements the algorithm as presented in "Introduction to Algorithms" by Corman et. al. The
partition function is:

proc partition(data : [] real) : int {
const pivot = data(data.domain.last);
var i = data.domain.first - 1;
for j in data.domain.first..data.domain.last-1 {
if (data(j) <= pivot) {
i+=1;
data (i) <=> data(j);
}
i+=1;
data (i) <=> data(data.domain.last);
return i;

103 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

using the swap operator <=>. The domain.first and domain.last members are the bounds of the sub-array,
inclusive; there is also domain.low and domain.high which are limits of the range and can differ from first
and last if the alignment is not zero.

The example program populates an array with random numbers, calls quicksort, and then checks that the values
do indeed increase across the array. Compile and run it with

make ex_quicksort [CHPLFLG='"-s nelt=#"]

bin/ex_quicksort

You can change the size of the array with the nelt config param, passed to the compiler with the make variable
CHPLFLG. Unlike a runtime value which requires no space between the -s and variable name, the compiler
accepts a space.

(If you were to compile this program and run it for a moderate sized array, say of 100,000 elements on our
machine, you'd find your console filling with warning messages about memory allocation failures. This seems
to be an artefact of the Chapel runtime, since the program will run to completion and pass its verification. At a
sufficiently large nelt the program segfaults. QuickSort implementations often use a simple insertion sort once
the sub-array size gets below some threshold, say 8 or 16 elements; for these small arrays the inefficiency of the
insertion sort isn't a problem, and wins over the recursion. The example program contains a config param —-
use_insert to turn this behavior on or off and --1en_insert to set the threshold. Using the insertion sort
decreases the number of allocations the runtime does and increases the array size at which the warnings appear.
Another option is to compile with CHPLFLG=--fast which turns off the runtime checks and the allocation
failure messages.)

In a way cobegin and coforall are convenience statements that handle the synchronization of all threads at
the end of their block. The sync command can also do this; it takes a block of statements that must complete
before execution continues to the next command. This differs from a cobegin in that any task that is created
within the scope of the sync, even in subroutines, must finish, while the cobegin only requires the statements
directly within its block must.

sync {
begin run_gaborfilter (img, size, 0, sclx, scly, wavelen, phi_rad);
begin run_gaborfilter (img, size, pi/2.0, sclx, scly, wavelen, phi_rad);

}

The serial command can block a section of code from launching new tasks if a condition holds. This means
that the section will execute serially. You can use this to avoid the overhead of launching tasks if there are too
few of them. The form of the statement is

serial <condition> {
/* commands, possibly with begin/cobegin/coforall */

}

or, if there's only one statement that follows, you can replace the braces with do. If you omit the test, then
Chapel assumes it has the value true and will always execute the block serially.

As with forall, return, break, and cont inue statements are not allowed inside a concurrent block for any
of these commands.

104 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

Gabor Filter Bank (gaborbank)

Because the Gabor filter responds most strongly to lines at a given angle, we often want to run several filters
with different rotations on the same image. We call this a bank of filters, and the angular resolution depends on
the filter's parameters, mostly size and scale.

We want to modify our filter from the last chapter to generate the bank. Without changing the convolution
routine itself, we can take advantage of task parallelism do run the filters in parallel. The modified program is
called gaborbank, and it can be compiled with

make gaborbank

It replaces the ——theta command line argument with ——nrot, the number of filters in the bank. Filters will be
spaced evenly over 180 degrees; the angle wraps, so that from 180 to 360 you get an inverted response. We also
delete the ——outname argument and will save each result as "bank_<rot>.png", where <rot> is the filter rotation
in degrees.

Most of the main procedure in the previous version has been pulled into a procedure called

filter_and_save (). Here we can allocate a new image to store the result independently of other tasks, run the
filter, convert the result to 8-bit, and save it to disk. We pass all the global parameters through to the function so
it is self-contained. The theta parameter is now passed in degrees; for clarity, we've renamed phi_rad to
emphasize it's in radians.

proc filter_and_save(img : clrimage, size : int, theta : int, sclx : real,

scly : real, wavelen : real, phi_rad : real) : int {
const theta_rad = pi * theta / 180;
var gabor : clrimage;

var grey : rgbimage;

var gabor2grey : conversion;
var outname : c_string;

var retval : int;

gabor = new_clrimage (img) ;
run_gaborfilter (img, gabor, size, theta_rad, sclx, scly,

wavelen, phi_rad);

gabor2grey.how = rgbconvert.CENTER;
gabor2grey.plane = clrplane.Cl;

retval = display_color (gabor, grey, gabor2grey);
if (retval < 0) then return retval;

/* This makes a 3-digit angle without using something like sprintf. */

if (theta < 10) then outname = "bank 00" + theta + ".png";
else if (theta < 100) then outname = "bank 0" + theta + ".png";
else outname = "bank_ " + theta + ".png";

retval = PNG_write (outname, grey, CLR R);

free_rgbimage (grey) ;

105 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

return retval;

}

Our main () becomes very simple. It reads the input PNG, does the conversion for the L or Y plane, and then
uses a coforall to generate the bank.

proc main() {
var rgb : rgbimage;
var clr : clrimage;
var retval : int;

retval = PNG_read (inname, rgb);
end_onerr (retval, png);

retval = rgb_convert (rgb, grey, space);
end_onerr (retval, rgb);

coforall bank in 0..nrot-1 {
const theta = (bank * 180) / nrot;
filter_and_save (img, size, theta, sclx, scly, wavelen, phi_rad);

free_rgbimage (rgb) ;
return 0;

}

And that's it. If you run this program, you'll see that each core of your CPU is occupied. If you cycle through
the filter responses you'll notice edges strengthen and weaken as it rotates, with vertical edges strongest for
angles near 0 degrees and horizontal for 90 degrees. You may see that the filters are not run in order because
there is no guarantee about when the coforall iterations will fire. This might not be a good use of coforall
if the number of banks is more than the number of cores though. A forall would be better in this case.

Gabor bank, theta=60, shallow lines to upper right Gabor bank, theta=90, horizontal lines

/|

N

Gabor bank, theta=120 shallow lines to uper Iet Gabor bank, theta=150, steep lines to upper left

Synchronization

The Chapel language provides synchronization variables and atomic operations. Atomic operations allow
multiple tasks to safely interact when reading or changing a value by limiting the operations that can be done and
ensuring these cannot be interrupted. We'll talk about atomic variables in the next chapter. Synchronization
variables are used to communicate between tasks by forcing one to wait until it can access the value, either for a
read or a write. They come in two flavors. The first, sync, is indicated by placing the keyword before the type
in the variable declaration

var done$: sync bool;

where the trailing $ on the name is traditional. sync variables normally operate in a read-write-read-write cycle,
where a task will wait until the previous action occurs. The second are single variables which offer a write-
once-read-many functionality.

var fired$: single bool;

Chapel pairs a flag with the value of the variable. It tracks whether the variable has a value —is "full" — or does
not — is "empty". sync normally requires that the flag be empty before a write or full before a read to ensure the
proper cycling; if it is not correct, then the task will wait. single does not place the requirement on the read, so
there is no way to clear the flag for a second write; any read will block until the write occurs. Compound
operators like += perform first a read, then a write, so they can be used safely with sync variables.

Any boolean, integer, real, or imaginary variable can be used for synchronization. Strings and complex types
cannot. You cannot declare a structured type as sync or single, but you can declare members to be. Similarly
you cannot say that an array is a sync or single, but the array can contain synchronized elements.

var locks$: [l..n] sync int;
We said 'normally' a couple times because there is low-level access to methods on these variables that can
override the behavior. Using them in expressions or assignment statements calls down to the default methods.

The method names encode the flag state at the beginning and end of the operation.

done$.readFE () sync read the variable when flag full then clear the flag

107 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

done$.readFF () sync, single read the variable when flag full, leave flag unchanged

done$.writeEF (val) sync, single assign value when flag empty, then set the flag
done$.writeFF (val) sync assign value when flag full, leave flag unchanged
done$.readxX () sync, single peek with non-blocking read, leave flag unchanged
done$.writeXF (val) sync non-blocking write, then set the flag if empty
done$.reset () sync assign default value and clear the flag, non-blocking
done$.isFull () sync, single non-blocking test if flag is set

Normal access to a sync variable is with readFE () and assignment is with writeEF (). Normal access to a
single variable is with readFF () and assignment with writeEF ().

We'll see an example of a sync variable in use in the second version of the FAST corner detector.

Wrap-Up

We've converted two programs now into parallel versions. The first used data parallelism, where we carved up
the data to analyze via a forall loop, analyzed each piece separately, and combined the results at the end. As
long as the intermediate values are kept separate for the loop variable, our calculation is safe, although some re-
organization of the code was needed to do this. Our second program used the existing convolver as a black box
and instead divided the problem into independent analysis tasks. No reduction step was necessary, and the only
code change was to place the work into a procedure and then use a coforall to call it. We've learned:

— forall is the basic looping structure when working on data in parallel. For tasks, we can use begin to
fire-and-forget a task, cobegin to start a group of tasks in parallel and wait for the result, or coforall
to start each iteration of the loop as a separate task and wait for the result. coforall only makes sense
when there are enough computing resources to run all iterations in parallel. In general forall is
sufficient.

— The statements after the loop, cobegin, or begin are treated as a function that is executed as a task.
Variables from outside the scope of this function are passed in as arguments. You can modify the default
intent (const) for them by a with clause. inout and out are not allowed.

— Arrays are passed by reference to this function and so their contents may be changed, with the risk of
race conditions.

— Aserial block executes its contents sequentially if its condition holds, irrespective of the presence of
one of these four parallel control structures.

— A sync block waits until any task that is generated in its scope completes before the next command
executes.

— Areduction collapses a collection to a single value. A scan generates as many values as the collection
has, each the incremental application of its operator. The minloc and max1oc operators generate a
tuple with the minimum/maximum and the value from a second zippered range of "names" (or, more
usefully, indices).

— A sync variable is normally handled in a write-read-write-read cycle (although there are methods to
read or write multiple times in a row). A single variable works in a write-once-read-many manner.

108 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

Variables of the primitive types except string and complex may be declared as either. These variables
will cause a task to block until the appropriate access is made by another thread.

Next we'll build on this experience and write another parallel program that uses k-means clustering to quantize
the colors in an image.

Exercises

1. Create a version of gaborbank that runs the filter at perpendicular angles. Since there are only two calls to the
convolver, instead of a variable number, use a cobegin. Allow the rotation of one of the angles to be specified
on the command line.

2. Modity the color conversions to run in parallel.
3. Modify the Gabor filter convolver to run in parallel.

4. A pyramid is a series of images of decreasing resolution, where the image at level p has half the size (width
and height) as at p-1 and whose pixels are an average of the four corresponding below it. That is,

I(p,x,y) = (I(p-1,2*x,2*y) + I(p-1,2*x+1l,2*y) + I(p-1,2*x,2*y+l) +
I(p-1,2*x+1,2*y+1)) / 4;

A pyramid is often used to find interesting features at coarse resolution (which can be done quickly) and to

translate this into an area to explore in more detail at lower levels. Write a program that calculates each level of
the pyramid. How would you divide the work to be done in parallel?

Files

A tarball with the material for this chapter is here. A zip file is here.

A PDF of this text is here.

109 PARALLEL PROGRAMMING (gabor_par, lab_limits) Chapel By Example - Image Processing

pdf/chapel_by_ex_parallel.pdf
data/chapel_by_ex_parallel.zip
data/chapel_by_ex_parallel.tar.gz

K-MEANS CLUSTERING (kmeans)

Introduction

k-means clustering is a general partitioning strategy. It assigns data points in a n-dimensional space to a number
of buckets, effectively dividing the space and quantizing the values. We can use it in image processing to reduce
the number of colors in an image to make finding regions of distinct color, or comparing colors, easier. In other

words, we attempt to find the strongest clusters of values over the color space and label each pixel with the ID of
the cluster to which it belongs.

This is an iterative process that runs until the population of the buckets stabilize. The heart of the algorithm is a
per-pixel comparison with each cluster to find the best fit, which then modifies the cluster's boundaries for the
next pass. This can be done in parallel, and is the focus of this chapter.

The directory for this chapter is kmeans. You'll be using the C functions for reading and writing PNG images in
img_png_v3.c and img_png_v3.h, and the color library which is updated to ip_color_v3.chpl. Use make name
to build the programs, leaving off the ".chpl' suffix. Executables get placed in the bin sub-directory and
intermediate files in build. The image for this chapter is field.png.

The files for this chapter are located here (as zip file). A PDF copy of this text is here.

Aside: Clustering

The k-means clustering algorithm is simple. Begin by giving each bucket a position in the color space. The
seeds can be generated randomly, although this tends to produce buckets that are initially empty. We will instead
pick pixels at random from the image, making a fixed number of attempts for each and picking the one furthest
from all other seeds assuming a minimum separation be met.

For each pass we assign each pixel to the bucket whose center of mass is closest. The center of mass is the
average per color plane over all members of the cluster. We then compute the new center of mass from the
assignments and look at the population of each bucket. When that has stabilized we are done. If not, any clusters
that are unpopulated are re-seeded to midway between the two largest unused blocks and we start another pass.

We do not actually mark the pixels in any way during the pass. We only have to track the aggregates for the
cluster. Specifically, the actions at each pixel are to

1. Find the closest cluster. (smallest distance to its center of mass)
2. Increment the count of pixels in the cluster for this pass. (npix)
3. Increment a sum of color coordinates for the next center of mass. (sumc1, sumc2, sumc3)

This can be done in parallel. After all pixels are done, then we need to finish processing the clusters. We
calculate

1. The new center of mass (clcm = sumcl/npix, c2cm = sumc2/npix, c3cm = sumc3/npix)
2. The difference in npix between previous pass and current pass. (dnpix)

When the largest dnpix/npix ratio of all clusters falls below a threshold of, say, 1%, then we are done. We can
map each center of mass back to RGB and create a greyscale image with the ID of the cluster at each pixel.

110 K-MEANS CLUSTERING (kmeans) Chapel By Example - Image Processing

pdf/chapel_by_ex_kmeans.pdf
data/chapel_by_ex_kmeans.zip
data/chapel_by_ex_kmeans.tar.gz

The final algorithm is:

1. Seed clusters, ensuring some minimum distance between
2. Repeat a pass
2a. Assign pixels to clusters, tracking population and color plane sums
for centers of mass.
2b. Calculate center of mass.
2c. Place empty clusters between biggest.
2d. Calculate cluster population change as fraction of
population.
until population change is small enough, or maximum number of passes
has been reached.
3. Convert cluster colors back to RGB.
4. Create greyscale image holding cluster assignments.

Implementation (kmeans_v1)

We will not be presenting all the code in detail here, rather only discussing the Chapel implementation issues.
The program can be found in kmeans_v1.chpl. Compile it with

make kmeans vl

It takes four command-line arguments

——inname PNG file to read
——outname file to create with cluster ID assignments
——space LAB, YUV, HSV, RGB - color space to use

—-—-ncluster number of clusters
Run it with
bin/kmeans_vl —--inname=field.png —-outname=ids.png

You'll find a few changes in the ip_color module, now up to version 3. First there are two new members of the
clrimage class that store the ranges for the columns and rows because we'll want to use each separately and
array.domain.dim () is wordy. The domain for the image hasn't changed, but it's now built from these
separated ranges. We also store the color space in a third new member so we don't have to pass it around as an
argument. The third change is the addition of procedures to convert from any color space back to RGB. (This
was Exercise 1 in the Color Conversion chapter.)

We perform the pixel assignment and creation of the ID image in parallel using foral1 loops. Our strategy for
the pixel assignment is to create an array ksplit of temporary clusters to hold the intermediate sums and reduce
them at the end. We iterate over the rows in the outer, parallel loop, and ksplit is specified by row, so this is safe.
The procedure returns an array with the new cluster definitions.

proc iterate_pass(clr : clrimage, const ref kset : [] cluster) {
/* intermediate storage, one per row */
var ksplit : [clr.rows] [kset.domain] cluster;
/* results of pass */
var knew : [kset.domain] cluster;

111 K-MEANS CLUSTERING (kmeans) Chapel By Example - Image Processing

forall y in clr.rows do
for x in clr.cols {
/* closest cluster returns index of best cluster fit. */
const closest = closest_cluster(clr.cl(y,x), clr.c2(y,x), clr.c3(y,x),
clr.space, kset);
ksplit (y) (closest) .npix += 1;
ksplit (y) (closest) .cl += clr.cl(y,x);
ksplit (y) (closest) .c2 += clr.c2(y,x);
ksplit (y) (closest) .c3 += clr.c3(y,x);

forall k in kset.domain do
for y in clr.rows {
knew (k) .npix += ksplit (y) (k) .npix;
knew (k) .cl += ksplit (y) (k) .cl;
knew (k) .c2 += ksplit (y) (k) .c2;
knew (k) .c3 += ksplit (y) (k) .c3;
}
forall k in knew {
if (0 == k.npix) {
k.skip = true;
} else {
k.cl /= k.npix;
k.c2 /= k.npix;
k.ec3 /= k.npix;

return knew;

}

The double bracket notation on ksplit indicates that we have an array each of whose elements is an array; this
contrasts with a single bracket array addressed with a tuple (like the color planes) where the tuple is converted to
an index. cluster is a record with fields to hold the population npi %, the center of mass and partial sum per
color plane, and a flag if we should ignore the cluster because the population is 0.

record cluster {

var skip : bool; /* true to ignore cluster in set */

var npix : int; /* number pixels assigned to cluster */
var cl, c2, c3 : real; /* center of mass of each color plane */
var cltmp : real; /* temp needed to sum H */

var r, g, b : c_uchar; /* RGB equivalent of cl, c2, c3 */

}

The operation of the procedure should be clear. We write out the loops as nested rather than using a single
forall statement and tuple as the index variable in order to guarantee which is the outer loop. (The actual code
has a special case for the H plane, because we need to account for angles wrapping around 0).

112 K-MEANS CLUSTERING (kmeans) Chapel By Example - Image Processing

The other use of parallelism is with the ID image. Given an rgbimage called quant to hold the IDs, the
parallel loop looks like

forall (y, x) in clr.area {
var xy = (y * quant.ncol) + x; /* flat pixel index */
/* closest_cluster returns index of best cluster fit. */
quant.r (xy) = closest_cluster(clr.cl(y,x), clr.c2(y,x), clr.c3(y,x),
clr.space, kset);

}

The closest_cluster () procedure checks a color (c1, c2, c3) against each cluster, using the procedure
cluster_sep () to measure the distance in a sum-of-squares fashion, and picking the smallest. We simply
track the minimum and location as we go along, rather than using a reduction.

Module: Random

The seeding step requires random numbers to pick pixels across the image. Chapel provides a standard module
called Random that generates reals in the range 0.0 to 1.0. The module defines a class RandomSt ream whose
constructor can take an integer seed; if none is provided, the system time is used. Use the method getNext ()
for a new random value, or fil1Random (array) to populate an entire array of reals (fil1Random () may also
be called as a stand-alone procedure, in which case it creates a new stream). The random number generator is by
default parallel-safe.

rand = makeRandomStream() ;
rand.getNext () ;

var seeds : [1..10000] real;
rand.fillRandom (seeds) ;

The module provides two different generators, NPB, which comes fro the NAS Parallel Benchmark, and PCG.
In Chapel 1.17 the module has not yet stabilized and its documentation recommends using
makeRandomStream () to hide any future changes. The NPBR algorithm can only generate real numbers,
while PCG will work with any time. Our code will work with either generator, which means defining two
procedures to covert a random real to a position within a range or a domain. random_ranged () returns an
element from within the range:

proc random_ranged(rand : RandomStream, rng : range) : rng.idxType {
const elt = rng.length * rand.getNext () ;
return rng.first + rng.stride * (nearbyint(elt - 0.5) : rng.idxType);
}

The element is shifted by -0.5 so that the range is centered within the interval; because nearbyint () rounds -
0.5 to 0, the limit stays valid. Notice how we can use the type of the range, rng.idxType, as the return
declaration for the procedure and the cast because this is known at compile time. Ranges do not, unfortunately,
have a method to return the nth element, or we would be able to easily support other non-rectangular types. For
domains we build a tuple to hold a random value from each range, and then call random_range () to populate
it.

proc random_domain(rand : RandomStream, dom : domain) : dom.rank*dom.idxType {
var pt : dom.rank * dom.idxType;
for i in 1..dom.rank do pt (i) = random_ranged(rand, com.dim(i));
return pt;

113 K-MEANS CLUSTERING (kmeans) Chapel By Example - Image Processing

}

This handles any domain geometry. Again we are able to use dom. idxType in the declarations, as well as the
dom. rank parameter. Domains also have the property dom.numIndices, but this is not a parameter like the
rank and cannot be used at compile-time.

The seeding procedure itself picks a random pixel in the image for the first cluster and then tries a fixed number
of pixels for the others, picking the one that is the furthest from all seeded clusters.

Module: Sort

The k-means algorithm is sensitive to outliers affecting the center-of-mass. This can cause clusters to shift into
an empty volume of space, further from all data points than any other cluster, and so coming up empty during a
pass. Rather than leaving them adrift, we move them halfway between the largest clusters, assuming these are
the most likely to need sub-dividing. If there's more than one empty bucket then the first goes between the
largest and second largest, the next between the second and third largest, and so on. This is somewhat naive;
another strategy would be to track the standard deviation or density of each cluster and split the worst, or to
check if the cluster is multi-modal. To do this we need to know the biggest clusters, or to order them by
decreasing population. The Sort module provides the standard sorting routines: QuickSort, MergeSort, HeapSort,
InsertionSort, BubbleSort, and SelectionSort. The sort () function is the general-purpose entry into the library
and wraps a call to QuickSort. All work on 1D arrays of arbitrary type and require a compare () function that
returns a negative number if item1 comes before item2, a positive number if after, and O if equal. (This matches
C's gsort () convention.) We can overload the default function for our data type. We do this locally inside
fillin_empties() so that we can use different comparisons in other places.

proc fillin empties(kset : [] cluster, space : clrspace) {
proc DefaultComparator.compare(cl : cluster, c2 : cluster) {
return (cl.npix - c2.npix);

}

This puts the clusters in ascending size. To reverse the order the module has defined a reverseComparor that
inverts the result of the standard Comparator. We only need to use it; there's no additional code.

sort (kset, comparator=reverseComparator);

/* assign empties */

}

The default comparator itself uses <, so you could overload that instead.

record DefaultComparator {
proc compare(a, b) {
if a < b { return -1; }
else if b < a { return 1; }
else return O0;

Atomic Variables (kmeans_v2)

Atomic variables are restricted either in software or by hardware so that certain operations are guaranteed to be

114 K-MEANS CLUSTERING (kmeans) Chapel By Example - Image Processing

consistent between tasks: one will never see the variable in an intermediate state. This might be done by placing
a lock around the variable so that only one task can interact with it at a time, or it may use CPU commands that
protect the memory location. In Chapel any integer, unsigned integer, boolean, and real may be declared atomic.
Simply place the at omic keyword before the type

var pixsum : atomic int;

Although you cannot treat structural types as atomic, you can declare their members to be so.

You will not be able to use normal assignments or operators for this variable, neither to change its value nor
access it. Instead, the variable will now support several methods:

pixsum.read()

returns the variable's value
pixsum.write (val)

places a new value in the variable
pixsum.compareExchange (orig, new)

stores new as the value only if orig is the current value, otherwise does nothing
returns t rue if the value was changed, false if not

pixsum.add (val)

equivalent to pixsum += val; not supported for bools; returns nothing
pixsum.sub (val)

equivalent to pixsum —= val; not supported for bools; returns nothing
pixsum.or (val), pixsum.and(val), pixsum.xor (val)

equivalent to |=, &=, ~=; only supported for integers; returns nothing
pixsum.fetchAdd(val), pixsum.fetchSub(val)

as pixsum. [add|sub] (val) but returns the original value; not supported for bools
pixsum.fetchOr (val), pixsum.fetchAnd(val), pixsum.fetchXor (val)

as pixsum. [or|and]|xor] (val) but returns the original value; only integers
pixsum.testAndSet

sets the value to t rue and returns the old value; only supported for bools
pixsum.clear

sets the value to false; only supported for bools
pixsum.waitFor (val)

blocks the task until the variable has the given value

We can use atomic variables to replace the intermediate array during the k-means iteration pass. You'll find the
changes in kmeans_v2.chpl. If you look at the iterate_pass () procedure in kmeans_v1, you'll notice that we

only need to add and read ksplit. We add five atomic members to the cluster structure to handle the
intermediate sums

record cluster {

var skip : bool; /* true to ignore cluster */
var npix : int; /* number pixels in cluster */
var cl, c2, e¢3 : real; /* center of mass */

var r, g, b : c_uchar; /* back-converted RGB value */
var sumpix : atomic int; /* incremental sum for npix */

115 K-MEANS CLUSTERING (kmeans) Chapel By Example - Image Processing

var suml, sum2, sum3 : atomic real; /* incremental sum for c[1-3] */
var sumh : atomic real; /* second sum needed for H wrap */

}

We could have declared npix, c1, c2, and c3 to be atomic, but this would mean we would have to use the read/
write methods everywhere else in the program. (OK, we did do a version like this, but it was harder to read;
since our changes are limited to the iterate_pass () procedure, this seems to be the cleaner and easier
change.)

The iteration pass is now simpler, using only the new clusters.

forall (y, x) in clr.area {
const closest = closest_cluster(..);
knew (closest) .sumpix.add (1) ;
knew (closest) .suml.add(clr.cl(y,x));
knew (closest) .sum2.add (clr.c2(y,x));
knew (closest) .sum3.add (clr.c3(y,x));
}

forall k in knew {

k.npix = k.sumpix.read();

k.cl = k.suml.read() / k.npix;
k.c2 = k.sum2.read() / k.npix;
k.c3 = k.sum3.read() / k.npix;

}
Again we've omitted the special case for the H plane; see the source for details.

Chapel's implementation of atomic variables is still in active development and what we've presented here
describes the current implementation. Eventually you will be able to specify looser restrictions on accessing the
variable, and you will be able to pass these conditions as arguments to all the methods above. There are also
design considerations if you work with atomic variables when tasks are split over different pieces of hardware or
inter operate over a network. You'll find details by digging into the documentation.
CHPL_HOME/doc/rst/technotes/atomics.rst is the starting point.

To use this program
make kmeans_v2
bin/kmeans_v2 --inname=field.png —--outname=ids2.png

The result will differ from kmeans_v1 because the random number generator has no seed. If you provide the
same value in both programs in the 'const rand = new RandomSeed () ;'line in seed_clusters () the
results will be the same.

Performance

This program was the inspiration for this tutorial. We've been playing around with color quantization recently,
and have threaded and CUDA versions running in C. You may notice that the accuracy of the color quantization
isn't fantastic and that the algorithm can take a long time to settle. The inaccuracy is related to proper seeding
and handling of empty clusters; splitting large clusters also seems necessary. The run time is tied to the
relationship between colors in the scene and the number of clusters used; too many clusters leads to slow

116 K-MEANS CLUSTERING (kmeans) Chapel By Example - Image Processing

convergence, too few loses detail. This is an active area of research for us, so we can't offer solutions.

Original image field.png Cluster IDs assigned random color

You can use gnuplot to show where the clusters are. The graph will plot a dot in the 3D R, G, B space for the
cluster at its center of mass and with a size proportional to the number of pixels contained in it. First save the
output from kmeans and delete all lines up to and including the table header. Then start gnuplot and type

set xlabel “R" ; set ylabel “G"” ; set zlabel "“B”

set nokey

set view 45, 307, 1, 1

basenpix = 5000

splot 'datafile' u 6:7:8: ($2/basenpix) : ($6*65336+$7*256+$8) with points pt 7
ps variable lc rgb variable

The value basenpix should be about the number of pixels in the smallest cluster and determines how big to
draw each dot.

117 K-MEANS CLUSTERING (kmeans) Chapel By Example - Image Processing

Clusters in the image

To demonstrate this inaccuracy, the color_checker.chpl program creates a PNG image colors.png with the colors
of the Macbeth chart. Running kmeans on this image with ——ncluster=25, you'll find not every block has a
unique color. Although the random seeds will give you different results, the run below only found 19 colors of
the 25 that exist (including the black bars between squares). In the gnuplot diagram there are 5 large dots for the
blocks that have combined: (2,1) and (3,4); (4,1) and (2,3); (4,2) and (1,3); (6,2) and (4,3); (1,4) and (2,4), where
the numbers are (column,row). (Block (5,4) looks similar to (3,4) but is really different.) Compile and run the
program with

make color checker

bin/color_checker
bin/kmeans_v[12] —--inname=colors.png —--—-outname=ids_clr.png

Color chart colorized 1Ds showing many blocks merged

118 K-MEANS CLUSTERING (kmeans) Chapel By Example - Image Processing

10 4 13| |12| |14] |15

16| |16 2 17| |18 [19

Clusters in color checker, excluding black IDs assigned to color blocks

What we can compare is the performance of the two approaches we've taken. Running on the field.png image
with 50 clusters and a fixed seed to RandomStream, we find run times (in seconds) of

base --fast improve base
vl 167 14 12 X column sums
v2 145 15 10 atomic variables

Both programs ran the clustering in parallel on four cores. The base column gives the time the analysis took
when the program was compiled normally, the ——fast column when built with CHPLFLG=--fast. The
improve column is the ratio of the base to the fast times.

Atomic variables do not hurt the performance of this program. Only when we take away the base sanity
checking by the runtime do we see a small hit. As with the Gabor filter programs, we again see an order of
magnitude improvement when we compile with —-fast.

Wrap-Up

In this chapter we've used a divide-and-reduce approach to running the color clustering in parallel. We've also
seen how we can use Chapel's atomic variables to eliminate the intermediate storage and reduce step; the
performance of this approach is competitive with the first. We've learned:

Integers, reals, and bools may be declared atomic. You can declare members of structures atomic, but
not the structure itself.

— Atomic variables perform uninterruptible access and modification to their values. They require explicit
read () and write () methods to do this. They support a limited number of operations, including +=, -

=, &=, |=, and ~=, as well as compare-and-exchange and test-and-set.

— The Random module provides a stream of values between 0.0 and 1.0. You can fix the seed for the
sequence when you instantiate the stream.

— The Sort module implements the common sorting algorithms. There is no comparison function; you

119 K-MEANS CLUSTERING (kmeans) Chapel By Example - Image Processing

must overload the relational operators > and >= on your data type, or < and <= if sorting in decreasing
order.

In the next chapter we'll implement another parallel image processing program, looking for corners in images
with the FAST detector. This will require we write our own iterator.

Exercises

1. Generate a back-mapped image. That is, create a color RGB image where instead of cluster IDs you store
their corresponding RGB values. How do the results compare to the original image?

2. Write a Gaussian filter to smooth the initial image (in color space) before doing the quantization. How does
this affect the quantization?

3. This implementation compares each pixel against each cluster to find the closest. The kdtree library in the

RANSAC chapter is more efficient, especially as the number of clusters increases. Modify the kmeans program
to use it, building a new tree before each pass and using find_nearest_point () to get the closest cluster.

Files

The files needed for this chapter can be found here. A zip file is here.

A PDF version of this text is here.

120 K-MEANS CLUSTERING (kmeans) Chapel By Example - Image Processing

pdf/chapel_by_ex_kmeans.pdf
data/chapel_by_ex_kmeans.zip
data/chapel_by_ex_kmeans.tar.gz

FAST CORNER DETECTOR (fast)

Introduction

We have implicitly used Chapel's concept of an iterator in our loops. Iterators are constructs that step through a
sequence one item at a time. A loop processes these steps until there are no more. Iterators are provided for
ranges, but we can also create our own. To demonstrate this, we'll program a circular iterator for a FAST corner
detector.

The directory for this chapter is fast. You'll be using the C functions for reading and writing PNG images in
img_png_v3.[ch], and the color library ip_color_v3.chpl. Use make name to build the programs, leaving off the
".chpl' suffix. Executables get put in the bin sub-directory, intermediate files in bui1d. The sample image for
this chapter is owl.png.

The files needed for this chapter are here (as zip file). A PDF copy of this text is here.

Aside: Corner Detectors

A corner is a 2D feature in an image, a point where there are strong gradients in orthogonal directions. If a block
is aligned to the pixel grid then the vertical edge has a strong gradient over x but not y, and the horizontal edge
has a strong gradient in y, not x. As you approach the point where the edges meet the opposite gradient begins to
increase, until at the corner both are present. Alternatively we can look for patterns of "on" and "off" pixels in
the neighborhood of a corner, where the difference between on and off is some threshold. Corner detectors are
run on greyscale images.

The Harris corner detector tests the gradients. Using a differential edge detector to measure them, we smooth the
data with a low-pass filter to reduce noise and then calculate the determinant and trace of the matrix of the
second-order derivatives

det = (dxxI * dyyI) - (dxyI * dyxI)

trace = dxxI + dyyI
dxxI dxyI

dvxI dvvT dxxI = dxI ** 2

X

o Yy dyyI = dyI ** 2
dyyI = dyI ** 2

where we approximate the second-order derivatives by applying the first derivatives twice. The metric
det - kappa * trace * trace

gives the strength of the corner detector. kappa is usually about 0.04 and smaller values pass more corners. You
can threshold this value to mark corners in the image.

The SUSAN corner detector sums the difference between each pixel within a circle to the center (xc, yc). It uses
a smoothing function (blue) instead of an abrupt threshold (red)

121 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

pdf/chapel_by_ex_fast.pdf
data/chapel_by_ex_fast.zip
data/chapel_by_ex_fast.tar.gz

o= ATl f J k

08

40 30 20 0 0 10 20 30 40

SUSAN threshold

where t is a threshold parameter. Note that this is inverted in the sense that similar intensities contribute the
most. If this sum is below half the maximum possible over the spot, then the detector verifies it has found a
corner by looking at the pixels that contribute to it. If their centroid is far from the center and all pixels along the
line between the center and the centroid out to the edge of the circle belong to the set, then (xc,yc) is declared a
corner. Because the function is independent of the direction of the intensity change the detector works equally
well for a bright wedge on a dark background as for a dark wedge in light.

SUSAN members in cyan, centroid in red FAST light corner in cyan, len 11, start (+1, +3)

The FAST corner detector scans the perimeter of a circle about its center, marking pixels if they are above or
below the center by a threshold, or considering them the same. The detector requires that a significant fraction
of the periphery be a continuous stretch above or below. For example, in a circle of radius 3 there are 16 pixels
in the circuamference and we may require 9 or 11 in a row be strongly different in the same direction. You may
further add that the remaining pixels be near the center's intensity, although we will not do so.

Iterators

An iterator is defined like a procedure but with the iter keyword.. It may take arguments. It cannot overload
another operator. Inside the body you can use return without any expression, and may also use the yield
statement to give the next value. The iterator will be called repeatedly by the loop and will execute until it hits
either a return and or yield. At the return it ends. At the yield it pauses, returning the yield's expression.
The next time the iterator is called it resumes from the point it paused with the same context as before; that is,
the iterator operates as a closure.

An example duplicating a simple range with a stride is

iter whilerange(lo : int, hi : int, stride = 1) {

122 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

for i in whilerange(l, 5) do writeln(i);
> 1

> 2

> 3

> 4

> 5

for i in whilerange (-1, -5, -1) do writeln(i);
> -1

> =2

> =3

> -4

> =5

for i in whilerange(1,

>

vV V VvV V

for i in whilerange(l, 5, -1) do writeln(i);

var cnt = lo;

/*

Check validity of range. */

if (((hi < lo) && (0 < stride)) || ((lo < hi) && (stride < 0)) ||

(stride == 0)) then return;

if (0 < stride) {

1

O Jd 0w

while (cnt <= hi) {
yield cnt;
cnt += stride;

}

else {

while (hi <= cnt) {
yield cnt;
cnt 4= stride;

(no output, iterator not executed)

for i in whilerange (-1, -5, 1) do writeln(i);

(no output, iterator not executed)

for i in whilerange(l, 5, 0) do writeln(i);

(no output, iterator not executed)

10, 2) do writeln(i);

An iterator that is evaluated, either as an expression or during assignment to a variable or array, generates its
entire sequence stored in a one-dimensional array.

123

FAST CORNER DETECTOR (fast)

Chapel By Example - Image Processing

writeln (whilerange(1,10,2));
>13579

This example is found in ex_iterator.chpl. Compile and run it with

make ex iterator

bin/ex_iterator

Custom Iterators (fast_v1, test_fast_v1)

Our approach to implementing a new iterator evolved while working on this exercise. The original plan was to
have a 'circumference' that would step around a circle with a given radius at a central point. For small radii, say
r <7, we could just list the points in a series of yield statements; the calculation wouldn't get any more efficient.
For large radii we could calculate the points, which involves squaring and a square root, taking advantage of the
symmetry of the problem by only doing this in the first quadrant and reflecting into the other three.

Ah, but what if want to do this at every point in an image? This calculation could be cached, of course, which
means that in addition to the iterator we need to store the intermediate results. A class would seem the natural
way to do this. For consistency we treat all cases the same, even for small radii, although this will be a little less
efficient because the offsets to get the points will be stored in an array rather than hard-coded.

Class methods this() and these() (ex_class.chpl)

Both classes and records support two inherent methods we haven't talked much about yet. The this ()
procedure is called if you pass arguments to an instance.

var circle = new circumference (radius);
circle (center_x, center_y);

The method call on the instance circle is to this (), which we would define inside the class as

class circumference {
proc this(center_x : int, center_y : int) : int { ... }

}

The these () procedure is called by a loop to iterate over the class. The iterator takes no arguments, and
follows the normal construction rules.

class circumference {
iter these() { yield ptl; yield pt2; ... }
}

these () is what we want to use, and we can abuse this () to get the behavior we want. Our class will offer
two ways of calling it. First, we can completely specify the iteration — its radius, center point, and whether we
want the circle to close by repeating the first point as the last (otherwise it stops just before) — when we construct
the instance. Giving the instance a these () will allow us to use it on the loop line

for (x, y) in new circumference (radius, center_x, center_y, closed) { ... }

As written, this is a one-shot approach since there is no way to change these parameters outside the constructor.
The second way will take advantage of caching by providing a set_radius () method to pre-calculate the

124 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

quadrant and then use the this () method to return an iterator for a given point. The radius is fixed while the
iterator moves about the image so that the cost of caching is paid once. This means we will have to store the

radius with the class.

var circle =
for (x, y) in circle(center_x,
circle.set_radius (radius2);

for (x, y) in circle(center_x2,

new circumference (radius);
center_y,

closed)

center_y2) {

{ ...}

}

For the stand-alone mode we will need to implement a constructor and these ().

class circumference {
var r int;
var x _center, y_ center int;
var close_circle bool;
var Lquad domain (1) ;
var quad [Lquad] 2 * int;
var quadcnt int;

/* closed is an optional argument.

proc circumference (radius int,
set_radius (radius);

X_center = xc;
yeci

close_circle =

y_center =
closed;

proc set_radius (radius
if (r
r =

int) {
'= radius) {

radius;
prep_quadrant () ;

iter these() {

const xc = x_center;
const yc = y_center;
const closed = close_circle;

for i in 0..quadcnt {

= quad(i);
yield (xc + x, yc + y);

}

/* Second quadrant.

var (x, y)

for i in 0..quadcnt-1 by -1 {
y) = quad(i);
yield (xc - x, yc + y);
}
/* Third quadrant.

var (x,

125 FAST CORNER DETECTOR (fast)

XcC

int,

/* the points,

yc

/* range for lst quadrant points */
as an (x,y) tuple */
/* number of points in quad (incl.) */

int, closed = true) {

quadcnt-1 to not duplicate first point. */

Start at one to not duplicate point. */

Chapel By Example - Image Processing

for i in 1..quadcnt {
var (x, y) = quad(i);
yield (xc - x, yc - y);

}

/* Fourth quadrant. */

for i in 1..quadcnt-1 {
var (x, y) = quad(i);
yield (xc + x, yc - y);

}

if (closed) {
var (x, y) = quad(0);
yield (xc + x, yc + y);

proc prep_quadrant () {
var mid = 0; /* start of second half of quadrant */
var x, y : int;

Lquad = 0..2*r; /* slightly oversize the array */

/* The actual routine sets up the quadrant automatically for
radii between 3 and 7. */

quadcnt = 0;

X =r;
y =0;
do {

quad (quadent) = (x, ¥);
quadcent += 1;
y += 1;
X = nearbyint (sgrt (r**2 - y**2)) : int;
} while (y < x);
do {
y = nearbyint (sgrt (r**2 - x**2)) : int;
quad (quadent) = (x, y);
quadcnt += 1;
x —=1;
} while (0 <= x);
/* quadent is inclusive. */
quadcnt -= 1;

}

The quad array is the cache. prep_guadrant () handles each octant in the quadrant separately to ensure the
ring is continuous, looping over y from 0 to 45° and x from 45° to 90°. The domain Lguad of the array is
slightly bigger than necessary because we don't have a way to calculate the number of points in advance. The
iterator steps through the cache for each quadrant, using the ring's symmetry to add or subtract the peripheral

126 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

point from the center. The only tricky part is skipping the first or last point from the range to avoid overlapping
the last point of the previous quadrant.

For the cached version we need a different constructor taking only the radius, this (), and an iterator over the
cached quad. These get added to the class definition above.

proc circumference (radius : int) {
set_radius (radius);

/* closed is an optional argument */
proc this(xc : int, yc : int, closed = false) {
return circum_iter (xc, yc, closed);

iter circum_iter(xc : int, yc : int, closed : bool) {

/* Same as the 'these' function above, except it uses the arguments
and not the members. */

}

The program ex_class.chpl shows this framework, which we used to figure out how to use this () and
these (). Compile and run it with

make ex class

bin/ex_class

It has some differences to the final approach. In the example the this () method stores the center point as a
class member and then returns the these () iterator. This would not work in a parallel loop because the center
for each task would overwrite the others and the loop would be unpredictable. We had to define
circum_iter () so that all variables are local to it. Each task sees a separate version and can operate
independently.

There is one glaring bit of ugliness with this approach. If we cannot call these () from this () and be safe, we
also cannot call circum_iter () from these (). Being an iterator, these () must contain a yield statement.
It cannot call out to another iterator because it must return void (no value), unlike this () which can return the
the iterator. Compilation would fail if you were to try this. So we are stuck with two nearly identical copies of
the iterator; in fact, circum_iter () is just these () without the first three assignments.

Also ugly, but less glaring, is using this () as an iteration method. If you were willing to have a method call in
the loop, you could delete it and directly use

for (x, y) in circle.circum iter(xc, yc) { ... }
Also ugly is that the stand-alone version will leak memory because there's no way to call delete on the instance

when the loop is done and the instance goes out of scope. We wrote this before learning that classes require
manual management.

127 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

FAST Corner Detector (fast_v1.chpl, test_fast_v1.chpl)

The corner detector program takes a color PNG image, converts it to a LAB or YUV greyscale (ie. uses the L or
Y planes), and then checks each pixel to see if it meets the FAST criteria. If so, it marks the pixel on a copy of
the greyscale image. main () calls mark_corners () to make the copy and perform the check; each can be
done in parallel forall loops. Using forall is all that needs to be done to have the program running in
parallel.

The FAST test is done in the is_corner () procedure. It classifies each pixel in the circumference as being
more than a threshold amount above (MORE) or below (LESS) the center, or within the threshold (SAME), using
the pixel_thrdir () procedure. It then counts the number of consecutive MORE or LESS pixels, taking care to
wrap around at the first point. If this count is within the acceptable range, then the routine returns t rue, the
pixel is at a corner.

Compile the program with
make fast_vl

You can adjust the analysis parameters on the command line:

——inname=<file> input file

——outname=<file> greyscale copy with corners marked in red
—-—space=[LAB|YUV] which greyscale plane to use, L or Y

——radius=# radius of the detector

——minlen=# minimum count of consecutive MORE or LESS pixels
——maxlen=# maximum count of consecutive MORE or LESS pixels
——thr=# greyscale difference to label as MORE or LESS

The FAST detector normally uses a ring of radius 3, which gives 16 pixels in the circumference. There's 20 for
r=4, 28 for r=>5, 32 for r=6, and 40 for r=7 using the patterns found in fast_v1.chpl. minlen and maxlen will
therefore change depending on the radius, and are normally close to 3/4 of the circumference, representing a
right-angle. We use minlen=10 and maxlen=13 as our defaults. Remember too that the data range for L is 0-100
and Y 16-235. The threshold should change with the color space. You'll find that varying this parameter will
change the sensitivity of the detector: too low and there will be many false positives, too high and you will mark
only the strongest corners.

To run the program on the test image do

bin/fast_vl —--inname=owl.png —--outname=owl_corners.png

128 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

A

: -‘n" = :
T corners, thr=25

coners, thr=15 N

'

FAS FAS

You can also run color_checker in kmeans to generate a rectangle grid of differently colored squares and use this
as the input image.

. ./kmeans/bin/color_checker

bin/fast_vl —-inname=colors.png —-outname=color_corners.png

129 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

The artificial scene is accurately marked. Natural scenes tend to be quite a bit noisier. Try different thresholds.
For example, -—thr=20 on owl.png gives 181 corners, ——thr=15 724, and ——thr=25 36. What threshold in
the YUV space gives a result similar to the default LAB?

FAST corners on color checker

The program test_fast_v1.chpl is a self-checking test bench for the circuamference iterator and the is_corner ()
classification. Since it uses fast_v1.chpl as a module, we have the problem that there are two modules with
main () routines. To compile you'll need the extra compiler argument to pick one

chpl --main-module test_fast_vl -o bin/test_fast_vl test_fast_vl.chpl
fast_vl.chpl
or make test_fast vl

bin/test fast vl ——-minlen=9

Corner Suppression (fast_v2, test_fast_v2)

If you run the detector on a natural scene, you'll notice the number of corners is very sensitive to the threshold,
as we saw with the owl picture. Trees and plants in general create problems. The literature contains ideas of
how to reduce the count. For example, a comment in Klette (Concise Computer Vision) mentions using a figure
of merit, the largest difference in intensity between the FAST sequence and ring center, to rank the corners,
dropping those below some threshold. Szeliski (Computer Vision: Algorithms and Applications) talks about
adding a spatial separation criteria to the decision. We can combine these ideas to suppress corners that aren't
locally maximum in the figure of merit sense. We will add a suppression distance parameter that will chain
together all corners whose x or y coordinates are within this distance of another member of the group, keeping
the one with the highest figure of merit. The others will be dropped.

We'll need an expandable, sortable list to hold the details about the corners, which we'll implement as a generic
class. This will give us the chance to cover Chapel's support for generics.

Generic Classes and Records

Chapel considers a class, record, or function to be generic if you can customize the type of its members or
arguments, or the size with parameters.

You can make a generic class or record in three ways. First, you can create a type member

class chunkarray {

130 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

type eltType;
}

This identifier can be used in any position that a type normally would, including argument lists of methods,
declarations, and return types.

class chunkarray {
type eltType;
var data : [Lalloc] eltType; /* our payload */

/* This allows array-like access to the data, ie. instance(index).
It returns an element at the index ind with the type of our
payload. */

proc this(ind : int) : eltType {

return data(ind);

/* This will store an element of the generic type in the array. */
proc append(const in val : eltType) ({
/* ... */

}

If you need a procedure to return a type, by the way, then put the intent keyword type after the declaration,
without a colon

proc get_type () type {
return eltType;
}

Arguments can also take a type intent, in which case the type, not the value, in the caller is passed to the
procedure.

The second way of creating a generic class or record is to use a parameter member

class chunkarray {

type eltType;

param initalloc : int;

var data : [l..initalloc] eltType;
}

Third, you can omit a type when you declare a member. The type will be assigned when the class or record is
instantiated. A node in a linked list might be

class listnode {
var val;
var next : listnode(val.type) = nil;

}

The generic component to the class is set up with a type constructor. The compiler will generate one for each of

131 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

these three cases with the usual rules: one argument in the order listed in the class with its name for keyword
access. It does not include arguments for non-generic members. The constructor when called returns an instance
type with the types of the members set correctly. Use this instance type in the declaration of a variable. If you
initialize the t ype or param members, then these values become the defaults in the constructor; otherwise the
argument must be provided.

As an example of a generic class, we'll develop a chunked array that we'll use to store the corners we find. We
don't know in advance how many corners there are, so the data structure needs to grow. We'll want to access
elements randomly, so a linked list will be too inefficient. We'll use an array list. To avoid having to re-size the
array with each insertion once it fills, we over-size the growth using chunks. Re-allocations are needed only
when the chunk fills, which amortizes the cost of the growth. Often array lists double in size when they grow.
We'll use a fixed increment to keep the overhead small, at a cost of having to re-size more often.

For our example, we'll keep one array of data with two ranges, the first representing the allocated elements and
the second the subset of actual data that's been stored. We'll have two parameters that set the initial array size
and the amount to grow when full. Finally, we'll need a synchronized variable to guard access when adding
elements; we want to be able to use the array safely within a parallel block. The declarations look like

class chunkarray {
type eltType;
param INIT_ALLOC 2; /* values for demo */
param GROW_ALLOC 2;
var Lalloc : domain(rank=1l) = 1..INIT_ALLOC;
var Ldata : domain(rank=1l) = 1..0;

var data : [Lalloc] eltType;
var lock$: sync int = 1;

}

The class is generic because we have a t ype member; we'll need to provide that when instantiating. Notice that
the Ldata range is initially empty because the end index is less than the beginning. We've also initialized
locks so its flag starts in the full state.

Adding an element means checking that we have room; if not, then we increase the Lalloc range which
automatically re-sizes the data array. There is no method to expand a range on just one side, so we need to slice
off the expansion on the lower end. Alternatively, we could avoid expand () by tracking the size ourselves, but
we want the range to manage itself. The 1ock$ variable guarantees that only one call is active at a time; we use
the explicit readFE () and writeEF () procedures to make this clear. We use a const in intent for the value
so we make a copy.

proc append(const in val : eltType) ({
lock$.readFE() ;

/* Slice the expansion to trim negative indices. */
if (Ldata.high == Lalloc.high) {
Lalloc = Lalloc.expand (GROW_ALLOC) [1..];
/* For demo to show we're re-—-allocating. */
writeln("grew array to ", Lalloc);
}
/* Now there's room for the new element. */
Ldata = Ldata.expand(1l) [1..];

132 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

data (Ldata.high) = val;

lock$.writeEF (1) ;
}

We'll also provide this () and these () methods so we can use this class like an array. this () will return a
copy of the valid data. You must provide parentheses, there is no version of the method without. It is not
possible to return a reference to a slice in an array, so to access the actual array you would have to use the
members directly. this (int) returns the element at an index. these () will step over just the data, not the
entire allocation. Finally, we'll add a size () method to return the number of data points, which is also the
largest index (inclusive).

proc this () {
return data[Ldata];
}
proc this(ind : int) : eltType {
return data(ind);
}
proc these () {
for d in data[Ldata] do yield d;
}
proc size () {
return Ldata.high;
}

To demonstrate this class, let's define a simple record to hold some details about a corner, the center point xc, yc
and the length 1en of the consecutively differing pixels

record corner {
var xc, yc : int;
var len : int;

}

We create a new chunkarray to hold corners, and an instance of the record to show that the values will be
copied into the array, not a pointer to the record. The chunkarray instantiation requires the generic type be
passed as an argument.

var corners = new chunkarray (corner);
var details : corner;

We add a few data points

details.xc = 100; details.yc = 50; details.len = 10;
corners.append (details) ;

details.xc = 150; details.yc = 75; details.len = 13;
corners.append (details) ;

details.xc = 125; details.yc = 100; details.len = 12;
corners.append (details) ;

> grew array to {1..4}

133 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

before we can show how to access the data

writeln ("corners data in " , corners () .domain, " size ",
corners.size());
> corners data in {1..3} size 3

writeln("corner #2 ", corners(2));
> corner #2 (xc = 150, yc = 75, len = 13)

for c in corners do
writeln("corner at " c.xc, ", ", c.yc, " len ", c.len);
> corner at 100, 50 len 10
> corner at 150, 75 len 13
> corner at 125, 100 len 12

The full example is in ex_genclass.chpl. Compile and run it with

make ex_genclass

bin/ex_genclass

The default values for the parameters will of course be much higher in the actual program. We'll see another
example of a generic class in the next section when we build a kd-tree.

Generic Procedures

A generic procedure is created through its argument list in one of five ways. You can also add clauses that restrict
which generic function is called when the compiler resolves overloads. First, the intent of an argument can be
type or param. If type, then you must pass a type for that argument and the argument can be used as a type in
variable declarations and casts.

proc castto(type t, val : real) {
return val : t;

}

writeln (castto(int (32), 314.159));
> 314

writeln (castto(uint (8), 314.159));
> 58

If param, then you must pass a parameter expression and compilation occurs with that value. Second, you can
omit the type of an argument in which case the value provided by the caller determines it. The language spec
(Formal Arguments without Types) gives a good example of a procedure to construct an arbitrarily sized tuple
filled with a value of any type.

proc filltuple(param cnt: int, x) {
var result : cnt * x.type;
for param i in 1l..cnt do result (i) = x;
return result;

}

var exl = filltuple(4, 2.178);

134 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

writeln(" fill 4-tuple ", exl);
> fill 4-tuple (2.178, 2.178, 2.178, 2.178)

writeln(" type is ", exl.type : string);
> type is 4*real (64)

To print the type we only need to cast it to a string. The parameter sets the size of the tuple, and the unspecified
type of the second argument determines the type of each element. You'll find this example in ex_genproc.chpl.
The third way to define a generic procedure is with a query for a type. Like an argument without a type, the
procedure call will determine which type is substituted for the query. Instead of getting the type through the
variable, you can then use the type name directly. A queried type is indicated by a question mark preceding an
identifier and that identifier is used in place of a type. The filltuple () example could be written

proc filltuple (param cnt : int, x : ?t) {
var result : cnt * t;
for param i in 1..cnt do result (i) = x;
return result;

}

Queried arguments are used extensively in the Chapel source code. Here's the safeAdd () procedure in
CHPL_HOME/modules/internal/ChapelUtil.chpl, which checks if it's possible to add two integers of the same
type without overflow. The query on the first argument sets a requirement on the second — both must have the
same type. The procedure isIntegralType () is defined in CHPL_HOME/modules/standard/Types.chpl; it is
generic and returns t rue for int or uint types.

proc safeAdd(a : ?t, b : t) {
if !isIntegralType(t) then
compilerError ("Values must be of integral type.");
if a < b {
if b >=0 {
return true;
} else {
if b < min(t) - a {
return false;
} else {
return true;

}
} else {
if b <=0 {
return true;
} else {
if b > max(t) - a {
return false;
} else {
return true;

135 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

proc isIntegralType (type t) param
return isIntType(t) || isUintType(t);

The fourth way to specific a generic procedure is to pass a generic class or record as an argument type. We will
have a procedure that takes a chunkarray of corners to suppress, which makes this generic.

proc suppress_corners (rawcnr : chunkarray(corner)) : chunkarray (corner) {
/* ... */
}

You can query details about the generic type. If we had written

proc suppress_corners (rawcnr : chunkarray(?t)) : chunkarray(t) {
/* ... */
}

then Chapel would assign t to corner during compilation and create a version of this procedure with the
specific type chunkarray (corner). The definition of the &= operator in
CHPL_HOME/modules/internal/ChapelBase.chpl provides an example of this detailed query. If the width of the
integer arguments is the same, then the primitive low-level function can be called. If not, then casting is needed
and Chapel uses the explicit form.

inline proc &=(ref lhs : int(?w), rhs : int(w)) {
primitive ("&=", lhs, rhs);

}

inline proc &=(ref lhs : uint(?w), rhs : uint(w)) {
primitive ("&=", 1lhs, rhs);

}

inline proc &=(ref lhs, rhs) {

lhs = lhs & rhs;

}

This detailed query also applies to the fifth type of generic procedure, which has an argument with an array of a
generic type.

To help with overloading, generic procedures may have a where clause between the argument list/return type
and block of code. The conditions in the clause must be true for Chapel to pick that version of the procedure to
use. This technique is used extensively in the built-in modules. Consider the prototypes for the sorting functions
found in CHPL_HOME/modules/packages/Sort.chpl.

proc heapSort (Data : [?Dom] ?elType, comparator : ?rec=defaultComparator) ({
where Dom.rank != 1 {
compilerError ("heapSort () requires 1-D array");

}

The clause restricts HeapSort to one dimensional arrays. The queries are used to extract the domain from the
array to be sorted, the type of the array's elements, and the comparison function/record. In
CHPL_HOME/modules/internal/ChapelTuple.chpl you'll find as one of the addition operators

inline proc +(x : _tuple, y : x(1) .type) where isHomogeneousTuple (x) {

136 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

/* ... */
}

Here the function i sHomogeneousTuple () returns true if all the members of the tuple x have the same type.
The type of y says that it too must be the same by matching the first tuple member, so that we can add the values
safely. As a final example, the fillRandom procedure in CHPL_HOME/modules/standard/Random.chpl which
fills an array with random values has the prototype

proc fillRandom(arr : [], seed : int(64) = SeedGenerator.oddCurrentTime,
param algorithm = defaultRNG)
where isSupportedNumericType (arr.eltType) {
/* ... */

Implementation (fast_v2, test_fast_v2)

Our suppression of corners begins by modifying fast_v1 to generate details about each corner, namely its
location and the maximum pixel difference figure of merit. We'll sort them first by their x position, then their y,
so we can quickly abandon pairs whose separation along either coordinate is more than the parameter suppsep,
which will typically be between one and two times the FAST radius (if one then the points must be within each
other's FAST circle, if two then the circles will touch). We'll store all the close corners in a group, using a
modified priority heap to keep track of the biggest, with ties resolved randomly. When all pairs have been
processed we take the biggest and mark them on the greyscale image.

Now the details of the implementation, which is found in fast_v2.chpl. Compile it with
make fast_v2

The program takes the same command line options as fast_v1, plus ——suppsep=+# for the maximum difference
between the x or y coordinates of the pair.

The procedure is_corner_with details () has been added to return a corner record with the extra
information we need. In addition to the center and figure of merit, called dpi %, we track the starting point and
length of the consecutive run of differing pixels. The procedure is_corner () is now a wrapper around this
function that throws away the details.

find_corners () takes the details and stores them in a chunkarray. The corner detection is done in parallel,
which is why the append () method in the chunkarray needs to be synchronized. It calls down to
suppress_corners () to reduce the list, then cleans up before returning it.

proc find _corners(img : clrimage, spec : fastspec) : chunkarray (corner) {
const circle = new circumference (spec.radius);
const Ainside = img.area.expand(-spec.radius, -spec.radius);
var corners = new chunkarray (corner);

forall (y,x) in Ainside {
var details : corner;
if (is_corner_with_details(img, x, y, spec, circle, details)) {
corners.append (details) ;

137 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

var retval = suppress_corners (corners) ;

delete circle;
delete corners;
return retval;

The suppress_corners () procedure uses a standard sort module, defining the comparison relationships
between corners so that sorting is first by x, then y. It looks at all pairs that are close enough. The corner with
the better figure of merit is registered as the parent of the other. We use a flat array whose elements represent the
index of the parent, or -1 if the corner is a root (or hasn't yet been assigned), to hold the tree. Since we don't care
about maintaining a proper priority heap through all levels of the tree — only the root needs to be the biggest —
we go up from each of the two corners to their roots (which may well be the corners themselves if they haven't
been placed yet in a tree) and put the smaller under the bigger; this is done in the set_parent () procedure.
After processing all corners we then assemble those without any parents, in other words the best of each group.

138

proc suppress_corners (rawcnr : chunkarray(corner)) : chunkarray (corner) {

var cnr = rawcnr();
var suppcnr = new chunkarray (corner);
var parent : [rawcnr.Ldata] int;

/* Comparison function for sort, first by center x, then y. */
proc DefaultComparator.compare(cl : corner, c2 : corner) : int {
if (cl.xc == c2.xc) then return (cl.yc - c2.yc);
else return (cl.xc - c2.xc);

sort (cnr) ;

/* Remember, sets all elements to -1. */

parent = -1;

for ¢l in cnr.domain ({
for ¢c2 in cnr.domain[cl+l..] {
/* Sorted by x, so we don't have to check c2.xc < cl.xc. */
if ((cnr(cl) .xc + suppsep) < cnr(c2) .xc) then break;
if (abs(cnr(cl).yc - cnr(c2).yc) <= suppsep) {
set_parent (cnr, c2, cl, parent);

for cl in cnr.domain do
if (parent(cl) < 0) then suppcnr.append(cnr(cl));

return suppcnr;

FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

mark_corners () no longer does the FAST analysis. It now takes a list of corners, which could be the raw or
suppressed sets, and places a small colored cross in a copy of the greyscale image.

If you run this version on the test image with the default threshold, the number of corners drops from 181 to 123.
The suppression is clearest in the trees at the top, although there are doubles removed around the owl as the
detail image shows. (For ——thr=15 the number drops from 724 to 361, for -—thr=25 from 36 to 33.)

5l
s

FAST corners dfter suppression

Detail before suppression

Wrap-Up

Like the Gabor filters, a corner detector is a per-pixel operation and therefore one that's very easy to have run in
parallel. We've seen how an iterator works in Chapel, and how to implement a custom one. We've also seen how

139 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

standard class methods allow it to be used to drive a loop. We've written a generic class to store the corners as
they're generated, so we can eliminate many of the groupings that appear in natural scenes. We've learned:

— Aniterator is defined like a procedure. It uses yield statements to provide a value and a point where
execution will resume on the next call. return ends the process. You can call an iterator from a for,
forall, or coforall statement.

— Classes have a this () method which is called when you use the instance as a function. You can pass
arguments to this function.

— [Ifaclass has a these () iterator then you can use an instance where you would use a range in a loop
statement. The loop will cycle through that iterator.

— Classes and records are generic if they contain a type or parameter member, or a member whose type is
unassigned (and which gets defined by the value passed to the constructor when instantiating the class).
They have a default type constructor that creates well-typed versions during compilation.

— Procedures are generic if they contain a type or parameter argument intent, an argument without a type
(where the corresponding value in the caller is used), or a generic type as an argument. The argument
list can contain queries, which are ?identifiers that are replaced by the correct type and where the
identifier can be used as a type either in the argument list or in the body. The queries can also refer to
the details behind generic types, such as the size of integers, and can enforce relationships between
argument types for overloaded procedures.

— where clauses define requirements that generic arguments must fulfill in order for that procedure to be
called. This is used to remove ambiguity between overloaded generics.

A corner detector is an example of a feature detector that highlights unique aspects of an image. We'll use it to
look for common points in two different images by randomly matching points and looking for the best
agreement.

Exercises

1. Create a “spot” detector that covers the circumference and its interior. This can be used to implement a

SUSAN corner detector (see http://citeseer.ist.psu.edu/viewdocs/summary?doi=10.1.1.24.2763 for the original
paper describing the detector and its implementation). How does the SUSAN compare with the FAST?

2. Using a square kernel for a Gaussian low-pass filter leads to some distortion of the underlying circular
symmetry. Write a “spot” convolver that takes a circular kernel.

Files

The programs and image for this chapter can be found here. A zip file is here.

A PDF version of this text is here.

140 FAST CORNER DETECTOR (fast) Chapel By Example - Image Processing

pdf/chapel_by_ex_fast.pdf
data/chapel_by_ex_fast.zip
data/chapel_by_ex_fast.tar.gz
http://citeseer.ist.psu.edu/viewdocs/summary?doi=10.1.1.24.2763

RANSAC FEATURE MATCHING (ransac)

Introduction

Corners are an example of a feature which should be stable between images, independent of illumination,
camera, or scene composition. This means we should be able to use them to align different images, for stitching
them together in a panorama or matching up objects or comparing their content. If we can identify matching
corners, we can determine how to map one image onto another, accounting for scaling, translation, and rotation.
But with hundreds of corners an exhaustive search for the best fit is impossible, and there are certainly many that
do not have corresponding matches and which, if used, would give a bad mapping.

RANSAC, short for Random Sample Consensus, solves these problems by sampling the solution space using a
figure of merit that ignores mismatches and outliers. It forms a hypothesis, a proposed coordinate transform, by
picking a random subset of corners and assuming they match. It then evaluates the hypothesis by counting the
number of close pairs after transformation, nearer than some given distance. It makes many trials and picks the
one with the most matches, then refines the result with the pairs.

Say that we have a linear model accounting for scale and translation between the coordinates (x, y) of imagel
and (v, w) of image2

sx * x + dx
sy *y + dy

v

w

where sx and sy are scale factors and dx and dy offsets. We need two pairs of corners to determine these four
unknowns, and once we have them we can transform the corners in imagel into the image2 plane. If a corner
ends up closer to a corner in image2 than some threshold, we count that pair as a successful match. When done
comparing all corners we can refine the model by calculating the best fit of its parameters over the matches using
a linear regression

The RANSAC algorithm does assume there is a reasonably large overlap between corners in the two images and
that noise (aka false corners) and outliers do not dominate. If the ideal or actual transform does not have many
matches, then most trials will fail or give poor results and more will have to be performed. We haven't used this
technique before, though, so part of the reason for this exercise is to see how well the approach works.

In this chapter we implement RANSAC for two models, one with the shift-translation (ST) model above and one
with an affine transforms with rotation-shift-translation (RST). We won't be needing any parts of Chapel that we
haven't already seen, but we'll find we use most of the features we've talked about.

The directory for this chapter is ransac. The programs will use the C functions in img_png_v3.[ch] for reading
and writing PNG images and the color library ip_color_v3.chpl from the Color Conversion chapter. The FAST
analysis has also been pulled out into a separate library, ip_corner.chpl. Use make name to build the programs,
leaving off the ".chpl' suffix. Executables get put in the bin sub-directory, intermediate files in build. This
exercise uses a set of transformed images, with bonds1.png the original, base image.

The programs and images are in a tarball here (as zip file). Here is a PDF version of this chapter.

Aside: kd-Trees (kdtree, test_kdtree)

The key step in the RANSAC algorithm is to identify matching pairs of corners after transforming the
coordinates of one to the other's plane. This means searching a 2D plane for the nearest match, which is not well
supported by normal data structures. A kd-tree partitions the plane efficiently. It is a binary tree where the

141 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

pdf/chapel_by_ex_ransac.pdf
data/chapel_by_ex_ransac.zip
data/chapel_by_ex_ransac.tar.gz

coordinate used to divide the plane (volume, hypervolume) changes from level to level: in our case the root node
splits along x, the first layer by y, the second by x, the third by y, and so forth. This allows searching in O(log n)
time on average and O(n) worst case. Building the tree can be done in O(n log n) if a median search in linear
time is available, as we saw at the start of the tutorial (An Example). Such a median search does exist but is a bit
complicated to implement; a new method has just appeared with the same order of complexity.

Construction

Brown has recently published a new way to construct the tree, claiming that although it takes O(kn log n) time,
where k is the number of dimensions, it is somewhat more efficient than the median search for k <= 4. [Russel
Brown, "Building a Balanced k-d Tree in O(kn log n) Time", Journal of Computer Graphics Techniques, Vol. 4,
No. 1, 2015.] It makes a sort of the corner coordinates along each axis at the start, and then shuffles the indices
for each level of the tree, never doing a second sort.

The sorting can be done by any technique. Ties are resolved in a cyclic order through the coordinates. If we
have three, then sort one first by x with ties resolved by y then z (xyz), the second by y with z then x breaking
ties (yzx), the third by z using x then y (zxy). In Brown's paper and our implementation it is enough to store
indices to the corners in an array, rather than moving the corner data structures around. Note that because we are
sorting by index and not value the standard methods in the Sort module cannot be used; we'll modify the
QuickSort example from the Parallel Programming chapter to work with indices.

Having sorted the corners by coordinate we then start building the tree layer by layer. We pick the middle, ie.
median, element of the array as the node. We shuffle each sorted array so that those elements smaller than the
chosen are in one half and those larger are in the other. What this means in practice is that we do nothing for the
array whose primary sort coordinate is the one we've just used for the tree node (x, then y, then x, ...) because it's
already in order. We scan the other arrays from start to finish, which guarantees we keep the same sort order, but
use a comparison function based on the primary sort coordinate to determine if they go in the lower or upper
half. We then recur on each of these halves; like the implementation in the Example, this can be done in parallel.

Here's an example of building a twelve node tree from 3D points. The initial sort gives

index pt Xyz yzx ZXy
1 (6, 4, 2) 12 (1, 9, 4) 10 (5, 1, 1) 10 (5, 1, 1)
2 (4, 7, 5) 3 (3, 1, 8) 3 (3, 1, 8) 6 (8, 9, 1)
3 (3, 1, 8) 8 (3, 4, 6) 4 (7, 2, 2) 9 (6, 3, 2)
4 (7, 2, 2) 5 (4, 3, 5) 9 (6, 3, 2) 1 (6, 4, 2)
5 (4, 3, 5) 2 (4, 7, 5) 5 (4, 3, 5) 4 (7, 2, 2)
6 (8, 9, 1) 10 (5, 1, 1) 1 (6, 4, 2) 7 (6, 4, 3)
7 (6, 4, 3) 9 (6, 3, 2) 7 (6, 4, 3) 12 (1, 9, 4)
8 (3, 4, 6) 1 (6, 4, 2) 8 (3, 4, 6) 11 (8, 6, 4)
9 (6, 3, 2) 7 (6, 4, 3) 11 (8, 6, 4) 5 (4, 3, 5)
10 (5, 1, 1) 4 (7, 2, 2) 2 (4, 7, 5) 2 (4, 7, 5)
11 (8, 6, 4) 11 (8, 6, 4) 6 (8, 9, 1) 8 (3, 4, 6)
12 (1, 9, 4) 6 (8, 9, 1) 12 (1, 9, 4) 3 (3, 1, 8)

Each column for the three coordinate permutations contains the points in order and the indices that refer back to
the original list. In the zxy column, notice that (6, 3, 2) comes before (6, 4, 2) because the z and x values are the
same, leaving y to resolve the difference.

The first median is sixth in the sorted list for x (we can just take the lower of the two midpoints), or point 10 (5,
1, 1). We now have to shuffle yzx and zxy. The indices in all three arrays after the shuffle will be the same

142 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

above and below the median, without disturbing their sorted orders. From the xyz list we find 12, 3, 8, 5, and 2
below the median and 9, 1, 7, 4, 11, 6 above. In the yzx array these are ordered 3, 5, 8,2, 12and 4, 9, 1, 7, 11, 6,
and in the zxy array 12, 5,2, 8,3 and 6, 9, 1, 4, 7, 11. The shuffling is done by scanning the array from top to
bottom, copying the index into the appropriate half of a temporary array and copying back when done.

Xyz YZX ZXy

12 (1, 9, 4) 3 (3, 1, 8) 12 (1, 9, 4)
3 (3, 1, 8) 5 (4, 3, 5) 5 (4, 3, 5)
8 (3, 4, 6) 8 (3, 4, 6) 2 (4, 7, 5)
5 (4, 3, 5) 2 (4, 7, 5) 8 (3, 4, 6)
2 (4, 7, 5) 12 (1, 9, 4) 3 (3, 1, 8)
10 (5, 1, 1)

9 (6, 3, 2) 4 (7, 2, 2) 6 (8, 9, 1)
1 (6, 4, 2) 9 (6, 3, 2) 9 (6, 3, 2)
7 (6, 4, 3) 1 (6, 4, 2) 1 (6, 4, 2)
4 (7, 2, 2) 7 (6, 4, 3) 4 (7, 2, 2)
11 (8, 6, 4) 11 (8, 6, 4) 7 (6, 4, 3)
6 (8, 9, 1) 6 (8, 9, 1) 11 (8, 6, 4)

The middle of the top sub-array is the left child of the first node, and the middle of the bottom is the right child.
We pick medians in each half of the y column now, giving 8 (3, 4, 6) as the left child and 1 (6, 4, 2) as the right
(again rounding the midpoint down). We now reorder the x and z columns.

Xyz YZX ZXy
3 (3, 1, 8) 3 (3, 1, 8) 5 (4, 3, 5)
5 (4, 3, 5) 5 (4, 3, 5) 3 (3, 1, 8)
8 (3, 4, 6)
12 (1, 9, 4) 2 (4, 7, 5 12 (1, 9, 4)
2 (4, 7, 5 12 (1, 9, 4) 2 (4, 7, 5)
10 (5, 1, 1)

9 (6, 3, 2) 4 (7, 2, 2) 9 (6, 3, 2)
4 (7, 2, 2) 9 (6, 3, 2) 4 (7, 2, 2)
1 (6, 4, 2)

7 (6, 4, 3) 7 (6, 4, 3) 6 (8, 9, 1)
11 (8, 6, 4) 11 (8, 6, 4) 7 (6, 4, 3)
6 (8, 9, 1) 6 (8, 9, 1) 11 (8, 6, 4)

When we have 3 nodes left in a sub-array, as we do on the next pass, then the middle becomes the root, the first
its left child and the third its right. For the last sub-array, 7 (6, 4, 3) is placed in the third (z) layer with 6 (8, 9, 1)
to its left and 11 (8, 6, 4) to its right. If there are only 2 nodes then we take the second as the root and the first as
its left child, so 3 (3, 1, 8) goes as the left child of 8 (3, 4, 6), and 5 (4, 3, 5) as its left child. The complete tree
looks like

143 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

Final kd-tree

Search

We follow the algorithm in "Algorithms in a Nutshell" by Heineman, Pollice and Selkow, O'Reilly, 2008 to use a
kd-tree to find the node nearest a point. We first determine the leaf node where the point would be inserted (or,
if the point matches a node, we have our answer). That is, traverse the tree from the root, going left if the point
is less than the node in the cyclic sense we used building the tree, else right. There's no guarantee, however, that
the leaf must be the closest, only that we've probably excluded half the tree. Now we have to check all parents
of that node. Starting from the root, we measure the distance to the point, remembering it if it less than the best
distance found so far. We then ask if the perpendicular distance, which is the difference in x coordinates if it's an
x node or in y for a y node, is less than this minimum distance. If not, then we go down the tree in the direction
of the point: the other side cannot be closer than the minimum. If it is, then we need to check both children.

find leaf node n under which point would be placed
dmin = distance between point, root
better = nearest (pt, root, dmin)
if better exists, return better
else return n

nearest (pt, root, dmin)
result = <none>
if distance from root to pt < dmin, dmin = distance, result = root
dp = perpendicular distance from pt to root
if (dmin < dp) then
if pt < root then better = nearest (pt, root.left, dmin)
else better = nearest(pt, root.right, dmin)
if better exists return better
else
better = nearest (pt, root.left, dmin)
if better exists then result = better, dmin
better = nearest (pt, root.right, dmin)

distance pt to better

if better exists then result = better, dmin = distance pt to better
return result

In the best and average case this is an O(log n) operation because we make two visits down the tree, once to find
the leaf node and once to confirm that no parents are closer. In the worst case it becomes O(n) when we have to
check both left and right children at every level when the perpendicular distance is less than the minimum. For

144 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

small numbers of dimensions the kd-tree search is better than exhaustively checking all nodes, but as the
dimensionality of the space increases to somewhere between 10 and 20, the chance of hitting the worst case
quickly grows. Timing tests with the RANSAC program show a factor of 5 improvement over exhaustively
searching the plane, from 41.1 s to 8.3 s per trial.

Implementation (kdtree, test_kdtree)

We'll implement the kd-tree with a generic class, using a generic record for each node. It will take a parameter
for the number of dimensions (so the tree can be used outside this application) and a type for the data to store at
each node; nodes will store this payload, the point, and some flags to indicate if they're leaf nodes. The tree will
be built by first loading data and then constructing it. Since we cannot add data after the construction we'll need
to use an internal flag to prevent this.

The class will have five public methods:

kdtree() - constructor for the generic elements and number of points
add_node() - stage a point and its payload to put in the tree
assemble_tree() - sort the nodes into the kd-tree
find_nearest_point () — return payload in the node closest to a point
dump () - print a table with the tree, meant for debug

The node record is

record kdpoint {
type eltType;
param ndim : int;
var flags : uint (8);
var pt : ndim * int;
var val : eltType;

}

where val is the payload. The type and parameter are set when we use the node in the class

class kdtree {
type dataType;
param ndim : int;
var Ltree : domain(rank=1l);
var tree : [Ltree] kdpoint (eltType=dataType, ndim=ndim) ;
var Ldata : domain(rank=1);
var data : [Ldata] kdpoint (eltType=dataType, ndim=ndim) ;
var sortind : [1l..ndim] [Ldata] int;
var nstored : int;
var storable : bool = true;

}

Here we've separated the nodes into a unsorted array data and the kd-tree t ree. The domains for each are
defined separately so we can change them when we know the number of points. We use a flat array to store the
tree where the left child of node p is at index 2*p and the right at 2*p+1. nstored will track how many points
we've added, or where to store the next point that comes in. The storable flag will be set false when we
build the tree; we'll use it to tell whether we can add more points. The sortind array stores the sorted indices

145 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

we need.

You'll find the code implementing the five public methods in kdtree.chpl. We don't intend to go through it line by
line, but do want to make several comments.

In the constructor we make sure there are at least two levels to the tree, even if it stores only one element. The
routine that builds the tree assumes this (place_node () when the size of the array is 1). The tree otherwise is
full, ie. has 2 ** depth - 1 nodes, where depth is the log2 of the number of elements, rounded up. In the
Chapel standard math library 10g2 (val:int) returns the largest power-of-two smaller than the value; it does
not automatically cast to real.

The add_node () method simply checks that we haven't assembled the tree yet and copies the new point and
value into the staging area, the data array.

assemble_tree () begins by setting up and sorting the indices of the points. It then calls place_node ()
which will determine where to split the array, place that point in the tree, shuffle the points and recur on each
half. Unlike our QuickSort example and the kd-tree example at the start, we pass only the range and not a sliced
array because sortind is a member. But the core logic — shuffle and recur in parallel using cobegin — is the
same.

/* Lsort is subrange of data to process, cbase the primary sort
coordinate, and pos the index in tree to put the point. */
proc place_node (Lsort : range, cbase : int, pos : int) {

if (3 == Lsort.size) {

/* first element to left child, middle to pos, last to right */
} else if (2 == Lsort.size) {

/* first element to left child, middle to pos, right is empty */
} else if (1 == Lsort.size) {

/* element to pos, left and right empty */
} else {

const midpt = (Lsort.first + Lsort.last) / 2;

const cnext = if (cbase == ndim) then 1 else (cbase + 1);

shuffle_sortind (Lsort, cbase, midpt);
tree (pos) = data(sortind(cbase) (midpt));
tree (pos) .flags = cbase : uint(8) | HAS_L | HAS_R;
cobegin {
place_node (Lsort[..midpt-1], cnext, 2*pos);
place_node (Lsort [midpt+1l..], cnext, 2*pos+l);

}

Since we're using a flat array for the tree, we need flags in the kdpoint record to mark if the node is a leaf
(IS_LEAF), is empty (I1S_NIL), or if it has a left or right child (HAS_1 and HAS_R). These flags are defined as
constants inside the class. We don't use an enumeration because of the problems using the constant as an int
(Chapel can't figure out the type and you would need to cast every usage). We reserve four bits for coordinate
planes, supporting up to 16. Although shuffle_sortind () modifies the array, it is safe to do so in parallel
during the recursion because the ranges will not overlap.

The sorting method sort_kdpoints () is a modified QuickSort. For convenience we've defined three sets of
comparison functions, with point_<comparison> () being the fundamental group. They use a loop through

146 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

the coordinates, resolving the comparison with the first unequal pair.

inline proc point_lt(ptl : ndim * int, pt2 : ndim * int, cbase : int,
noeq = false) : bool {
for craw in cbase.. (cbase+ndim-1) {
const coff = if (craw > ndim) then (craw - ndim) else craw;
if (ptl(coff) != pt(coff)) then
return ptl (coff) < pt2(coff);
}
if (noeq) then halt ("kd-tree does not accept equal points");
else return true;

}

Here coff is wrapped to the range 1. .ndim. Since cbase varies, we cannot use a for param to unwrap the
loop. This is somewhat inefficient for a small number of dimensions, but it is a general solution that works for
all ndim. The noeq flag is needed because we don't want duplicate points while building the tree, but we do
want to allow them when searching for the nearest node. The other two sets are wrappers around this,
dataind_<comparison> () using the base coordinate and array index to get points from the data array via
sortind, and kdpoint_<comparison> () that pulls the points from the nodes directly.

In the shuffle_sortind () procedure we've made one optimization by noting that the indices in all coordinate
arrays are the same below or above the midpoint, only their order differs. We don't need to compare the points
with the median while shuffling, because we already know that the primary coordinate array is in the correct
order and tells us which half to place the index in. We use an intermediate array 1t to mark them, and the
decision to shuffle becomes a look up into 1t.

The searching procedure find_nearest_point () follows the algorithm described above. It is straightforward
code. Perhaps the only two points to make about Chapel is the use of a for param in the distance-squared
calculation dist2 (), and a clean definition of the perpendicular distance given the coordinate cbase used by
the tree node

proc perpdist2(pt : ndim * int, node : int) : int {
const cbase = tree (node) .flags & COORD;
return (pt(cbase) - tree(node) .pt (cbase)) ** 2;

}
Here COORD is a bit mask to extract the coordinate we packed into the flags member.

The program test_kdtree.chpl is a self-checking test bench for several functions in kdtree. Compile and run it
with

make test_kdtree

bin/test_kdtree

Aside: Transforms and Best Fits

RANSAC matching is a three-step process, beginning with an estimate of the transform between two images,
then checking if it is a good mapping, and finally refining it with the pairs of matching features. There are two
transforms we'll want to use, a linear coordinate mapping accounting for scaling and translation (ST) and a
mapping that also includes rotation (RST). The ST model is simpler and was used to develop and test the

147 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

program first. The math behind the steps involves solving a linear system for the first, evaluating the transform
for the second, and a best-fit error minimization regression for the third.

Repeating the ST transform from (x, y) coordinates to (v, w),

v = sx-x + dx

w =sy-y + dy
Note that the order of the operations is important; a TS model would give v = sx * (y + dx) which has a different
interpretation for the shift dx. This is just a linear equation which needs two pairs of points to fix the constants,
(x1, y1), (vl, wl) and (x2, y2), (v2, w2)

vl = sx-x1 + dx

v2 = sx-x2 + dx

wl = sy-yl + dy

w2 = sy-y2 + dy
Solving

sx = (vi—v2) [(x1 - x2)

dx = vl — sx-x1 = v2 — sx x2

sy = (wl—w2) /[(y1— y2)

dy = wl — sy-yl = w2 — sy y2

Refining these values given many matching pairs is the same as performing a linear regression which minimizes
the square error function

L = Z(vi — sx-x, — dx)
i=1

Take the partial derivative of L for each constant

oL

= Z—in-(vi — sx-x; — dx)
0 sx =

oL _ v _ e
Sdx ; 2 (v, SX * X, dx)

and set them to zero. Re-writing,

D —2x (v, — sx-x, — dx) = 0
i=1

148 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

or

n n n

ZXivi - sxz:xi2 — dx in =0
i=1 i=1 i=1

n n

Zvi - stxi —ndx =0

i=1 i=1

Solving for sx and dx gives

n

dx = (D.v, — sx D). x) I n
i=1

i=1

sv= (0 xv = XX v) X x (X x))

The solution for y and w is the same, just changing variables

dy = (2w, — sy 2 y) I'n
i=1 i=1

n

sy = (ngy,-wi - zyzw> / <zy — (X))

i=1

The RST transform is a specific case of an affine transform which preserves lines and the ratios between
distances. The general equations are

V = SxX-X + sxy-y + dx

W = Ssyx-x + syy-y + dy
and the specific values of the coefficients are

v = sx-cos(0)-x + sx-sin(0)-y + dx

w = —sy-sin(0)-x + sy-cos(0)-y + dy
That is,

sxx = sx - cos(0)

sxy = sx-sin(0)

syx = —sy -sin(0)

149 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

syy = sy - cos(0)
This is a system of four equations with three unknowns, so we have the additional requirement that
SXX - Sy = SX - Syy
with the inverse relationships
tan(0) = sxy / sxx = —syx /| syy
sy = (syylsxx)-sx = —(syx/sxy)-sx

The RST mapping is a rigid rotation of the plane when this condition holds. The affine transform also includes a
skewing or slanting which this model does not permit. Once again the order of the three operations is important.

This system has five unknowns, which we can get from three pairs of matching points that also satisfy the
additional requirement.

vl = sxx-xI + sxy-yl + dx
v2 = sxx-x2 + sxy-y2 + dx
v3 = sxx-x3 + sxy-y3 + dx
wl = syx-x1 + syy-yl + dy
w2 = syx-x2 + syy-y2 + dy
w3 = syx-x3 + syy-y3 + dy

The solution of the first three is

dx = (v3 — p3 — Z—;(VZ — p2)) I (r3 - Z—irZ)

sxy = (v2 — p2 — r2-dx) | q2

sxx = (vl — sxy-yl — dx) / xI
where the intermediate values p, q, and r are

p2 = x2-vl | x1

q2 = y2 — (y1-x2 | x1)

r2 =1— (x2/ x1)

p3 = x3-vl | xl

p3 = y3 — (y1-x3/ x1)

r3=1—(x3/ xi1)

150 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

For the second set of three
dy = (w3 — s3 — E(w2 - s2)) 1 (r3 - q—3r2)
q2 q2
syy = (w2 — s2 — r2-dy) | q2

syx = (wl — syy-yl — dy) / xI

using q and r from above and
s2 = x2-wl [x1
s3 = x3-wl [x1

Refining these values can also be done by minimizing the error function

n

L = Z(vi — SXX X, — SXYy -y, — dx)

i=1

which has partial derivatives to the constants

aasj)':x = ;—in'(vi — sxx-Xx, — sxy-y, — dx)
ﬁasiy = ;_2}’1"("1' — sxx X, — sxy -y, — dx)
aaTLx = i:1—2(vi — Ssxx- X, — sxy-y, — dx)

Setting these to zero

Z—2xi(vi — sxx- X, — sxy-y, — dx) = 0
i=1

Z—Zyl.(vl. — sxx-x, — sxyry, —dx) =0
i=1

n

D —2(v, — sxx-x, — sxy-y, — dx) = 0

i=1

or
invi—sxexiz—sxnyiyi—dx x. =0
i=1 i=1 i=1 i=1

151 RANSAC FEATURE MATCHING (ransac)

Chapel By Example - Image Processing

Zyivi - SXXZXJ,- - SXy Zyz'z - dxzy,- =0
i=1 i=1 i=1 i=1

n n n
ZVi — sxexi — sxyZyi —ndx =0
i=1 i=1 i=1
Solving for dx and inserting it in the other two equations reduces it to two unknowns
k + sxx-1 + sxy-m =0

p+syx-q+ sy-r=20

The solution to this, again using intermediate values to help, is
sxx = (r-k + m-p) [(m* — r-1)

sxy = —(k + sxx-1) / m

dx = (zn:vi — sxxixi — sxyiyi) I n
i=1 i=1 i=1

where
n n n
k = ”in"i - inZvi
i=1 i=1 i=1
n 2 n 5
I = (Z xl.) —n le
i=1 i=1
n n n
m = Xl .yz —n in.)/1 = q
i=1 i=1 i=1
n n n
P=nyvi— 2V
i=1 i=1 i=1

and q turns out to be equal to m. syx, syy, and dy have the same solution except that w is used in place of v.

Implementation (ransac_st, ransac_rst)

Like the kd-tree, implementing the RANSAC algorithm doesn't require any new Chapel features. The ransac_st
program implements the scaling-translation mapping and ransac_rst the rotation-scaling-translation. To compile

them

make ransac_st

152 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

or make ransac_rst
The first procedure called once we have lists of corners in each image is align_corners(). In pseudocode it does

proc align_corners (cornersl : [?Lcnrl] corner, corners2 : [?Lcnr2] corner,
out bestmap : mapinfo) {
build kdtree for corners2
for i in 1. .ntry {
do {
pick seeds and determine mapping
if mapping valid {
map cornersl onto corners2 plane
match up corners
if have enough matches, break out of while (trial is done)
}
} until too many failures to get a match (trial as a whole fails)
}
select best trial
re—-create mapped corners and matching pairs
refine mapping based on pairs
return mapping

}

When picking seeds we do not do so blindly; this would cause too many failed attempts. At a minimum we
require the corners be similar: they must have about the same length and orientation (as determined by the
sequence's start point) and must both be brighter or darker than the corner. We also require that the mapping
make sense, as checked in valid_map (). This means the scaling in x and y must be about the same and
bounded, and for RST that the extra condition on the affine coefficients holds. The bounds on sx and sy are
necessary because there is a pathological situation where a large part of one image scales to a small, dense
cluster of corners in the other, generating many false matches. This consistency check is done after picking both
pairs in ST, but must be used to screen the third pair of seeds for RST. This requirement has a substantial cost,
since we must calculate and validate the mapping for each corner (O(n)), but is necessary because the chance of
finding a valid corner at random is too small. These screenings take the form of checking each potential corner
and adding it to a list if it's acceptable, then picking which to use at random from the list.

Although the corner detection and validation parameters will change with the mapping, we ignore the effect. For
example, limiting how much the start point of the ring can shift will ultimately restrict the rotations that will be
accepted, and this parameter must be looser in RST than in ST. Our assumption is that the features are stable
over the mapping values we allow, but part of the experimentation with this algorithm is to see if that is true.

We use the formulas in the previous section to convert our seeds into the transform, and the mapping of corners1
just applies the transform. Matching is done by taking the transformed corners1 and finding the nearest point in
corners? using the kdtree. If this node has not yet been paired and the corners are similar, then we record it and
increment the number of matches. This is a little sub-optimal in that there may be multiple potential pairings,
and we're just taking the first, not the best. The assumptions that mapsep is small and corner suppression
separates the corners should reduce the chance of have multiple matches, but if the scaling differs very much
from 1 then this may not be true. Checking this is also part of our evaluation of the algorithm.

Once done, if this number is more than a given fraction matchfrac of the number of corners, then we declare
the trial a success, otherwise we record a failure and make another attempt. Once all tries are done, we pick the
one with the greatest number of matches as the overall winner. We re-create the list of matching pairs and run

153 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

the regression fit on them to generate the final mapping.

In addition to the command line arguments for changing the FAST detector, the RANSAC algorithm adds many
more

——ntry=<int> number of times to try to get a match

-——nfail=<int> number of failed seedings before abandoning try
——mapsep=<int> max distance between matches after mapping 1 to 2
——seedsep=<int> (RST) smallest distance between seeds
——matchfrac=<real> fraction of corners that must match to accept
——dlen=<int> difference in corner sequence length to be similar
——dst<int> difference in start point coords to be similar
——outname=<string> (RST) if provided, file name of image showing matches

There are also two parameters that define the maximum ratio between sx/sy or sy/sx (SAME_S_RATI0) and the
absolute value for sx or sy or their inverses (MAXSCALE). The RST version also adds a limits on the mismatch
between the affine scaling coefficients (SAME_RIGIDITY).

You'll find three test programs provided. test_map_rst is a self-checking test bench for the conversion between
affine coefficients and RST description. With test_fit_[r]st you provide the mapping on the command line and
the program runs just the corner mapping and matching, reporting the number of matches found. These
programs require the full ransac_[r]st program. They define a second main () procedure that the ——main-
module compiler flag picks.

chpl —--main-module test_fit_st —o bin/test_fit_st test_fit_st.chpl
img png_v3.h build/img png v3.o -lpng

To run test_fit_[r]st, use the appropriate input files and threshold and provide the mapping you wish to try. The
programs will report the number of corners that match.

Operation

We've manually rotated, scaled, and shifted the base image to test the programs. The images have a moderate
number of corners, and because they are based on the same image there should be good agreement between the
features. The images are

rot SX sy dx dy # corners after suppress
bonds1 base 0 1.00 | 1.00 0 0 2770 747
bonds2_s S 0 1.25 | 1.30 0 0 1568 562
bonds2_t T 0 1.00 | 1.00 | 150 | 300 2772 748
bonds2_st ST 0 1.25 | 1.30 | 150 | 300 1575 565
bonds2_rt RT 30 1.00 | 1.00 0 700 2278 651
bonds2_rst RST 30 1.25 | 1.30 | 150 | 1210 983 398

Either program should be run with --thr=10, for example

bin/ransac_st —--innamel=bondsl.png —--inname2=bonds2_st.png —--thr=10
bin/ransac_rst —--innamel=bondsl.png —--inname2=bonds2_rst.png —--thr=10

154 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

The FAST detector yields counts between 400 and 750 corners after suppression. The translation does not affect
the total, as it should not, but the scaling and rotation do. The detail images show that the RST corners are a
subset of the base; with one or two exceptions new corners have not been created.

We ran both RANSAC programs for 20 trials on each test image against the base, with a threshold of 10 and all
other parameters default. The tables present the average and one-sigma deviation for the transform, as well as
the number of tries that successfully found a mapping (good or bad), the average number of re-seedings per try
(including failures), and the time in milliseconds per try. The programs have been compiled with ——fast.

ransac_st --thr=10 --ntry=50 (default) differences to actual in red
SX dx sy dy

S 1.25 #00 0 | -0.1 0.0 -0.1] 1.30 0.0 O 0 0.0 O

1.00 0.0 O |150.0 0.0 O | 1.00 0.0 O |300.0 0.0 O
ST 1.25 #00 0 |1499 0.0 -0.1] 1.30 0.0 O |300.0 0.0 O
RT -- No successes in any trial --
RST -- N0 successes in any trial --
ransac_st --thr=10 --ntry=50 (default)

success [%] re-seeds time/try [ms]

S 49 £8 1087 +92 24 +2
T 99 +0 212 +36 7+1
ST 53 +6 1063 £60 24 +2
RT -- N0 successes --
RST -- O successes --
155 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

Base image bonds1.png, FAST corners with thr=10

Detail base image left (slides) Detail base image right (Bondcliff)

156 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

RST image bonds2_rst.png, FAST corners with thr=10, translation cropped

i
+
g L
o £
4 . i—) P
% W - ’J
+ e
; - W
1 o o]
. \ H :
Detail RST image left (slides) Detail RST image right (Bondcliff)
157 RANSAC FEATURE MATCHING (ransac)

Chapel By Example - Image Processing

ransac_st performs very well with the unrotated test cases, producing accurate estimates of the scaling and

translation. It has more trouble with scaling than shifting, as the success rate drops to 50% and the number of
trial seeds needed for each match grows strongly, which is reflected in the timing. All mappings are accurate.
As might be expected it had no luck with the rotated images.

ransac_rst --thr=10 --ntry=250 (default) differences to actual in red
SX dx sy dy theta (deg)
S 0.88 0.4 -0.38| 214 +£352 +214| 0.87 +0.4 -0.42| 435 +454 +435|-14.3 453 -14.3
T 1.00 +0.0 O 152 422 +2 | 1.00 0.1 O | 306 50 +6 | 0.0 +2.0 O
ST 1.03 +0.3 -0.25| 195 +225 +45 | 1.04 +0.4 -0.26| 652 4528 +352| 7.7 +52 +7.7
RT 1.00 0.0 O 0 10 0 [1.00 00 O 700 0.0 0 | 300 0.0 O
RST 1.25 0.0 0 146 +146 -4 | 1.30 0.0 0 | 1215 +22 +5 | 30.3 1.2 +0.3
ransac_rst --thr=10 --ntry=250 (default)
success [%] re-seeds time/try [ms]

S 23 +£2 1322 £22 39+1

58 +3 944 +42 38+1
ST 23 +2 1318 £22 39+1
RT 76 £2 792 £39 27+ 1
RST 45 +3 1121 £32 23+1

ransac_rst performs best on the rotated and translated images, but very badly with scaling without rotation. The
S and ST tests have large errors, and the high standard deviations indicate the measurements are not stable. The
number of successful tries is small, about half the rate of the good results, and this is reflected in the large

number of seed trials for each and the corresponding run time. Still, the results on the rotated images, and the
RST test in particular are good.

Does the performance of the RST version get better with more tries? Yes. We made 20 runs with nt ry between
50 and 500 in steps of 50. The chart shows the percentage of the 20 runs that were accurate to within 1%, 5%, or

10% of the actual values. All five parameters had to meet the accuracy threshold for the run to count.

100
90
80
70
60
50
40
30
20
10

0

% Runs Accurate

Accu

50 100 150 200

250

racy of Results

300 350 400

ntry

Accuracy of RANSAC RST results

158

1%
— 50,

] 0%

450 500

RANSAC FEATURE MATCHING (ransac)

Chapel By Example - Image Processing

For 450 and 500 tries, 19 of the 20 runs had sx within 1.25 + 0.125, sy within 1.30 + 0.13, dx within 150 + 15,
dy within 1210 £ 121, and theta within 30.0 £ 3.0 degrees. 14 of 20 runs had an sx of 1.25 + 0.0125, sy 1.30 +
0.013, dx 150 £ 1.5, dy 1210 + 12.1, and theta 30.0 + 0.3. Plotting the ratio of the standard deviation to the
average for each parameter gives an indication of the stability of the measurement. There is a sharp decline at
150 tries for the scaling factors, and then a slow settlement. This means there is a broad maximum in the
parameter space that is likely to be found given enough tries (150), but that the true alignment space is much
smaller, as the accuracy results imply.

Stability of Results

o
w
2]

o
w

o
)
3]

o
N

— SX

sy

stdev / avg
o
o

0.1

50 100 150 200 250 300 350 400 450 500
ntry

Stability of RANSAC RST results

We can see what is happening by placing the input images side-by-side and drawing lines between matching
corners. (This has only been implemented in the RST version. The image is generated if ——outname is given.)
When the matching is poor the lines can clump, with large scaling factors that compress one image into a dense
area of corners in another. You can see this in the bad image, where everything maps into the middle tree,
including the corner in the slide at the middle of the left edge and the tree in the lower left corner. There doesn't
seem to be a clear decision rule for separating bad and good results: the parameters of a bad match are still in the
ranges we allow, and other tests have shown that adding requirements such as needing to have a wide
distribution of matching corners over an image results in other pathologically bad matches.

159 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

Good RANSAC results, with theta=30.1, sx=1.25, sy=1.30, dx=150, dy=1211. Original image
bonds1.png on left, RST image bonds2_rst.png on right, lines pair matched corners,

Bad RANSAC result, with theta=7.3, sx=0.48, sy=0.52, dx=850, dy=1439. Original image
bonds1.png on left, RST image bonds2_rst.png on right, lines pair matched corners.

160 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

Wrap-Up

The RANSAC example offered nothing in the way of new language features. Instead it is a summary of what
we have learned, using the C interface to read and write PNG images, the color conversion library to convert
them to greyscale, and the FAST corner detector with its custom iterator and chunkarray generic class to store a
list of corner features. We added a generic class kdtree to efficiently search the plane for nearest corners. We
have used arrays, ranges, and slices extensively to process the images and lists. The program contains both task-
based parallelism in the kdtree (cobegin) and data parallelism (forall) in the RANSAC analysis.

Whether we put the RANSAC algorithm in our toolkit is still uncertain. Its performance on real images, of
natural scenes taken at different times by different people with different cameras, teases us with occasionally
good results, but not consistently. Scaling in particular gives it difficulty. We have tried another approach with
different features than corners, and the behavior is similar to what we see here: a rough alignment is reached, but
there are many local maxima in the matching figure of merit (here the number of matching corners) that generate
more matching pairs than the actual and give false results. The evaluation of the algorithm is still going on, but
it leads us outside the scope of this tutorial.

Files

The programs and images for this chapter are here. A zip file is here.

A PDF copy of this text is here.

161 RANSAC FEATURE MATCHING (ransac) Chapel By Example - Image Processing

pdf/chapel_by_ex_ransac.pdf
data/chapel_by_ex_ransac.zip
data/chapel_by_ex_ransac.tar.gz

PRACTICAL MATTERS
Debugging

While developing the programs for this tutorial, we've learned several tricks for debugging that might come in
handy: how to run a Chapel program in a debugger, how to look at the intermediate C code to find compiler
bugs, how to improve parallel performance (with a discussion of Chapel's tasking model), and submitting test
cases for bugs and feature requests.

Exceptions and Segfaults

If a program crashes with no error message printed to the command line, then you'll need a debugger to find the
cause. The compiler has command line options to help do this.

When compiling, use the -g and —-savec flags. —g adds debugging information (similar to a C compiler). —-
savec takes a directory (which will be created if it doesn't exist) and preserves the intermediate C files for line
references.

chpl -g --savec=/tmp/chpl -o prog prog.chpl

Note that this will increase the compile time.

Then when running the program, use the ——gdb flag to start the program in GDB.
./prog ——gdb [other arguments]

Within GDB, just type run. The program will halt at the error and print the stack trace with the line of the error.
You can inspect the program's state normally within the debugger. The compiler may have changed the names of
your symbols, as we'll see next when we look at the generated code.

Generated Code

While debugging the ransac_rst program, we ran into a runtime error complaining about memory being freed
twice. We found the problem by looking at the C code that Chapel generated from the program.

You'll see in the pick_seeds () procedure that we build a list of potential matches three times, for all but the
first seed. Before picking one, we check that there is at least one possibility. If not, we abandon the attempt.

nmatch = 0;
for i in rng2 {
if are_corners_similar (cornersl (indll), corners2(i)) {
nmatch += 1;
matches (nmatch) = i;

}

if (0 == nmatch) then return false;
It was in the last line that the program was crashing with the message

ransac_rst.chpl:192: error: halt reached - array reference count is negative!

162 PRACTICAL MATTERS Chapel By Example - Image Processing

where line 192 points to the definition of the matches array.

The compiler has two options of interest. As we said above, the -—savec option takes a directory for saving the
generated C code. You can also add ~—no-munge-user—-idents. The compiler will modify your symbol
names to prevent collisions with internal symbols by appending _chpl. This option will (mostly) prevent that
from happening. You'll find though that even with munging the symbols are still readable.

That (0 == nmatch) test compiled to:

call_tmp_ chpl54 = (INT64(0) == nmatch_chpl);
if (call_tmp_chpl54) {
ret_chpl = false;
chpl_autoDestroy5 (matches_chpl, INT64(192), "ransac_rst.chpl");
chpl_ autoDestroy2 (call_tmp_chpl6, INT64(194), "ransac_rst.chpl");
chpl_autoDestroy2 (call_tmp_chpl7, INT64(195), "ransac_rst.chpl");
goto _end _pick_seeds_chpl;
}
/* much code deleted */
_end_pick_seeds_chpl:;
chpl ASSIGN_17(try chpl, & formal tmp try chpl);
chpl_autoDestroy2 (call_tmp_chpl7, INT64(195), "ransac_rst.chpl");
chpl_ autoDestroy2 (call_tmp_chpl6, INT64(194), "ransac_rst.chpl");
chpl_ autoDestroy5 (matches_chpl, INT64(192), "ransac_rst.chpl");
return ret_chpl;

The pattern we see the compiler using is to jump to a label at the end of the procedure to clean-up local
allocations (which is the style we talked about in the Image Interface chapter). The problem is obvious: there are
two calls to chpl__autoDestroy5(matches_chpl, ...), which raises the error. Even with the symbol mangling it
was easy to find the problem code by searching for the array name given in the error message. The work-around
is to use nested i f's instead of returning so that the clean-up only occurs at the end of the procedure. You'll find
this in the current version of ransac_rst.chpl.

if (0 '= nmatch) {
/* determine third seed */
if (0 != nmatch) {
/* determine fourth seed */
if (0 !'= nmatch) {
return true;

}

return false;

Tasks

A system monitor that can show the load on each (virtual) core is a good tool for checking if your program is
being run in parallel. While running ransac_rst, we noticed that the corner alignment was only running on two
cores, despite a forall in the main loop.

You'll see a difference in behavior depending on which threading package you've compiled into Chapel. The

163 PRACTICAL MATTERS Chapel By Example - Image Processing

quickstart version uses pthreads, the full version qthread (plus there are a couple other third-party options that
we won't discuss). pthreads is a kernel-level library: threads are created and managed by the system, which is
relatively expensive. In the gthread library the threads are managed in user space. Technically Chapel doesn't
see threads, it works with an abstraction called a task that maps down to threads by each library. A task is
created by a begin, cobegin, or coforall. There is some control over the resources allocated for threads -
their number and stack size, for example - but in practice you should never count on being able to affect how
threads execute, or how tasks are mapped to them.

In the pthreads approach, there is a single task pool. Threads are created as needed for the tasks (up to a
configurable limit), and each thread runs its task to completion. Because threads involve system calls to create,
they are not destroyed when their work is done. Instead, they look for another task to pick up. Thus, tasks will
start quickly if there is an idle thread available, or less so if one must be created. If a task blocks (on a
synchronized variable, for example) then the system scheduler idles its thread. Each thread guards against stack
overflow by adding a guard page at the end of its stack that will raise an error if accessed.

For the gthreads library, the task pool is split into different queues. The library creates two kinds of threads,
workers for task execution and shepherds for distributing work. When a task blocks the shepherds can re-assign
a worker to another task. This is done in user space. There is one worker per core, and often multiple workers
per task queue. qthreads also uses a guard page at the end of the stack to guard against overflows.

In practice the gthreads library performs better than the pthreads. There may be a higher cost at start-up because
it creates more worker threads initially, but the pthread-by-pthread startup based on task demand may lead to a
slower overall program. If the system creates many pthreads, then they will hang around waiting for new tasks,
and this can lead to a deceptively high system usage as they poll for new work. You can see this if your system
monitor distinguishes between the time spent in system calls (pthreads overhead) or userland (actual work). We
have seen higher loads spread evenly across the cores with pthreads than gthreads so that it looks like more work
is being done, but the program still runs slower.

The Chapel development team recommends splitting work coarsely if possible, with big loops, to minimize the
thread overhead. They also suggest not using a coforall with many more iterations than the number of cores,
because this just creates tasks that will have to wait for resources to free up. A forall is in general a better
choice. Make sure the hardware configuration is in line with the runtime environment - don't create more locales
than compute resources, for example. Until you need to fine tune a large application, there's no need to play
around with the many environment variables and command line options that the libraries and Chapel support to
tweak the number of threads or stack size. Details about these options are scattered through many files in
CHPL_HOME/doc, like executing.rst and tasks.rst.

With the help of Greg Titus at Cray we were able to track down the problem and find a work-around. The top
level matching loop in the program looked like:

proc align_corners (const cornersl : [] corner, const corners2 : [] corner,
out bestmap : mapinfo,
maplto2 : [] int, map2tol : [] int) {
var tries : [1l..ntry] tryinfo;
var rand : new RandomStream(real);

const minlen = min (cornersl.domain.dim(1l).last, corners2.domain.dim(1l).last);
const mincnt = nearbyint (matchfrac * minlen) : int;
var tree = new kdtree (corners2.domain.size, int, 2);

/* Build the kd-tree for quick lookup of mapped corners during match. */
for i in corners2.domain {

164 PRACTICAL MATTERS Chapel By Example - Image Processing

tree.add node (corners2 (i) .center, 1i);

}

tree.assemble_tree();

forall i in 1. .ntry {
do {
if pick_seeds (cornersl, corners2, rand, tries(i)) {

var mappedl : [cornersl.domain] corner;

map_corners (cornersl, tries (i) .map, mappedl);

const matchcnt = count_matches (mappedl, corners2, tree);

if (mincnt <= matchcnt) {
tries (i) .nmap = matchcnt;
break;

}
tries (i) .nfail += 1;
} while (tries(i).nfail < nfail);

/* Regenerate the best mapping and refine it with a linear regression.
This is the final result. */

const besttry = select_besttry(tries);

var mappedl : [cornersl.domain] corner;

map_corners (cornersl, tries(besttry) .map, mappedl) ;

match_corners (mappedl, corners2, tree, maplto2, map2tol);

refine_mapping (cornersl, corners2, maplto2, map2tol, bestmap);

delete rand;
delete tree;
}

(This code compiled in Chapel 1.12. Later versions require some changes, for example for the random number
generator. We haven't checked if these fixes are still necessary.)

We started by looking at a histogram of the timing of each trial, which is measured and stored in the tryinfo
record. We noticed that although most trials took on the order of seconds to run, there were two that waited
hundreds of seconds (and two that took tens of milliseconds). We do not expect orders of magnitude difference
in the times.

We converted the loop to a work queue, which has a fixed number of worker threads that start a trial when
they're free. The coforall guarantees the number of workers. The next Iter variable is incremented as each
trial starts, making sure we cover the number specified.

var nextIter : atomic int;
nextIter.poke (1) ;
coforall worker in 1. .here.maxTaskPar {
var i = nextIter.fetchAdd(i);
while (i <= ntry) {
/* perform trial */

165 PRACTICAL MATTERS Chapel By Example - Image Processing

i = nextIter.fetchAdd(i);

}

here is a constant that Chapel creates. It is the locale in which the current task (the function call in this case) is
running. maxTaskPar is a member of the locale class with the maximum parallelism available at the site.

This too only ran on two cores under gthreads, however. With the pthreads library it would use all four cores,
albeit with a higher system load. This implies the problem lies with the threading library, which is not
something we could debug. The timing still showed a large spread in values. With the work queue we could
count how many trials each task in the coforall executed. Three were balanced, but one ran only one pass.
That thread was blocking until the others finished all the trials. The next step was to isolate what was causing
the block. We scattered timing statements throughout the loop and found the pick_seeds () call was where it
would freeze. Checking the timing of pick_seeds () almost line by line, we found that the call to the random
number generator was what was blocking.

We made one change to align_corners (), to move the random number generator into the loop. In principle
this shouldn't be necessary; it's supposed to be parallel safe. But something in its implementation, perhaps an
interaction with the synchronization variable the generator uses as a lock and the thread scheduler, causes the
gthreads library to block. Because pthreads are scheduled by the kernel, we would expect their behavior to be
different. The change was made in the process of trying different code paths, not deliberately. The loop you'll
find in the program now is

forall 1. .ntry {
var rand = new RandomStream() ;

}

with everything else in the procedure unchanged. This costs an instantiation of the random number generator per
trial, but avoids contention for its lock, and this restores the correct parallel performance. As with all the
problems we've found, we submitted the problem to the development team and continue to use the work-around.
(We haven't checked if the behavior has changed with the latest release.)

Bug Submission and Test Cases

Chapel is hosted on Github and uses its issue tracker for bugs. The New Issue button opens a ticket. You should
provide a summary of the problem, how to reproduce it, and your Chapel setup and environment. See
CHPL_HOME/doc/rst/usingchapel/privatebugs.rst for the guideline. You can also prepare a test case that
becomes part of the nightly test run.

Procedurally this is a bit involved. Because the test case will become part of the release, you'll be asked to sign a
Contributor's Agreement. The Chapel repository is found on Github at

https://github.com/chapel-lang/chapel

You'll notice it has several directories that do not appear in the release version. The agreement is found in one, at
doc/developer/contributerAgreements. There are two versions, one for individuals and one for companies.

Once the agreement has been signed and sent to the development team, you'll need a Github account to be able
to check in code. Make a clone of the master branch on your local machine. You'll find complete instructions in
CHPL_HOME/developer/bestPractices/ContributorInfo.rst

Chapel uses a test system that automatically runs code samples it finds. In the development version, you'll find

166 PRACTICAL MATTERS Chapel By Example - Image Processing

https://github.com/chapel-lang/chapel

the test cases in CHPL._HOME/test. Many of these are copied into CHPL_HOME/examples for the release
version. Not only does the system verify the correct behavior of the language and bug fixes, but it can also track
the performance of programs and is used to track feature requests. The main test script scans the top directory
recursively looking for files with a .chpl suffix. A test contains at least two files: a program to run and the output
it should generate.

<file>.chpl - test program
<file>.good - expected output

The test system compiles the program, runs it, and compares the actual output to the expected. Mismatches
count as a failure. If your program requires options to the compiler, anything other than a chpl -o <tmpfile>
<file> command, then you can put them in specification files with the options on one line. If your program
requires options to execute, they go in another file.

<file>.compopts - command-line options to compiler
<file>.execopts - command-line options to run program

The system also supports a directory-wide, instead of per-program, specification. For these two files the global
versions are COMPOPTS and EXECOPTS. We prefer using the per-test version.

To create a test case, you'll need a place to put it in under the test directory. The sub-directory
CHPL_HOME/test/users/<your name> seems to be the preferred location for your sample program and good
output. Then run the program start_test (found in CHPL_HOME/util) on your directory. You should run
start_test both with and without the -performance option; the nightly tests run with both. Once you've
verified the test case is correct, sync your branch with Github and submit a pull request to the development team.
They will verify the change and test case, ask you for edits if any are needed, and will finally do the merge with
the master branch.

The development team also uses this system for feature requests. In addition to the two files above, you'll need
to submit a description of the request. The first line of <file>.future must contain the type of change (feature,
bug, edit to an error message) and a succinct summary. The rest of the file can contain details about the
proposal. If the change raises a compiler or runtime error, then you can include another file to capture that. This
will catch other changes to Chapel that break the incorrect behavior we currently have.

<file>.future - explanation of feature request
<file>.bad - output generated on a failing test

Note that the output in <file>.bad may contain information specific to a release: line numbers inside the
compiler, for example. If you add a script <file>.prediff, it will be run on the output before comparisons are
made. This might include sed commands to remove variable line. Make sure the file is flagged executable.

<file>.prediff - pre-processing of output before comparison to .good/.bad
Feature requests are not included in the daily regression testing. The team monitors them separately.

The test system can also be used to monitor the performance of programs. The system will examine the
program's output for keywords or strings. A value after the keyword/string will be extracted from the output and
appended to a file that tracks the value over time. There is support for graphically viewing the progress in a
browser, as described in the documentation of the test system in
CHPL_HOME/doc/developer/bestPractices/TestSystem.txt (on Github, not in the official release).

167 PRACTICAL MATTERS Chapel By Example - Image Processing

<file>.perfkeys - keyword(s) in output that gives a performance metric

There are also variations of the compiler and execution options files, since they may differ from the functional
tests. Note that ——fast ——static are automatically added before the options you define.

<file>.perfcompopts - compiler command-line options during performance tests
<file>.perfexecopts - execution command-line options during performance tests

Let's see the test system in action. We've added the necessary files to the ransac directory to verify the output of
ransac_rst. This required a change in the code, adding the config param --fixrng to use a known seed for the
random number generator. This removes the variability when running the program: we should see the same
output, with only the average time per try changing.

In ransac_rst.chpl:

forall i in 1. .ntry {
var rand : RandomStream();
if (fixrng) {

rand = makeRandomStream((2*i) + 1); /* must be an odd seed */
} else {
rand = makeRandomStream() ;

}
/* rest of loop unchanged */

}
Our compiler options are

ransac_rst.compopts:

——fast -sfixrng=true ip_color_v3.chpl ip_corner.chpl kdtree.chpl img png v3.h
build/img_png_v3.o -lpng

ransac_rst.perfcompopts:

—sfixrng=true ip_color_v3.chpl ip_corner.chpl kdtree.chpl img png v3.h
build/img_png_v3.o0 -lpng —--dynamic

You'll notice that most of the line contains the files we put on the normal compilation command. We add —-
fast so that the normal test bench runs quickly. ——dynamic is needed to cancel the -—static option that's
added automatically and which on our system does not link.
For the execution options we list the input files and threshold.

ransac_rst.execopts and ransac_rst.perfexecopts:

——innamel=bondsl.png —-inname2=bonds2_rst.png —--thr=10

We will want to remove the variable timing result in the output for the functional test bench. A sed command to
delete the line is enough.

ransac_rst.prediff:

168 PRACTICAL MATTERS Chapel By Example - Image Processing

#!/bin/sh

testname=$1

outfile=$2

sed '/avg time per try/d' $outfile > $Soutfile.2
mv $outfile.2 $outfile

This is also part of the line with the timing value we want to track. The full line is
ransac_rst.perfkeys:
avg time per try [ms]

Now in the ransac directory you can run the test bench.

cd ransac
start_test ransac_rst.chpl

You'll see the program setting up the test environment, compiling the program, and running it. It prints a
summary with the pass at the end. A copy of the output is put in a log file. You can see which is used if you type

start_test -h

and look for the -logfile line. The default location is in the Chapel distribution directory. If you're working
elsewhere, you'll want to change the location.

The performance test bench wants to write its results into the environment variable CHPL,_TEST_PERF_DIR,
which defaults to CHPL_HOME/test/perfdata/<machine>. Change this if you're not working directly in the
distribution. You'll also need to rename the prediff file so that system does not run it and delete the timing data.
(The development team recommends a config constant to turn off the variable output for functional tests,
because the system can't skip the prediff script.)

mkdir /tmp/perfdat

export CHPL_TEST PERF DIR=/tmp/perfdat

mv ransac_rst.prediff ransac_rst.prediff. func
start_test -performance ransac_rst.chpl

Once this runs, you'll find a file /tmp/perfdat/ransac_rst.dat with the timing value. If you run the program
repeatedly (and start_test has an option —num-trials to make multiple runs with only one compilation) you'll
see them added to the end.

Resource Usage
There are several tools available to help track resource usage by programs.

For debugging memory usage, Chapel programs will run under valgrind. There are also command line options
when you run a program. --memStats prints a table with the amounts that have been allocated and freed, --
memLeaksByType the source of memory that's not been freed when the program ends, and ——memLeaks a full
list of all unfreed memory, including where in the program it was allocated.

If you compiled Chapel with the hwloc package, it contains several programs to discover the system's layout.
They're found in CHPL_HOME/third-party/hwloc/install/<arch>/bin. 1stopo will show the system's topology
graphically. hwloc-info and hwloc-1s will print the information on the console.

169 PRACTICAL MATTERS Chapel By Example - Image Processing

The October 2015 Chapel 1.12 release contains a new monitoring tool called chplvis, found in CHPL_HOME/

tools/chplvis. To use it you add two calls to start and stop the service, and can add tags to monitor smaller
sections of your program.

use VisualDebug;
startVdebug (dirname) ;
/* do work */
tagVdebug (tagname) ;
/* do more work */
stopVdebug() ;

As the program runs it will write information about the tasks that are created and when they start and finish to a
file in the given directory. The chplvis program graphically displays the resource usage on each node, such as
CPU usage, number of tasks, and inter-locale communication. The graphical display doesn't seem very useful
for our setup with its single CPU, but the raw data the VisualDebug module generates does look interesting. For
the ransac programs it shows that the kdtree generates more tasks that there are computing units, meaning that
many will be idled, while the forall loops used during alignment are tailored to the number of cores.

170 PRACTICAL MATTERS Chapel By Example - Image Processing

LOOSE ENDS

There are a few parts of Chapel that we haven't touched on. Here's a quick summary until we're able to provide
a more detailed description:

171

Locales are separate processing units with local memory. The runtime identifies the hardware
configuration and provides it through an global array Locales that describes each unit, such as the
number of cores it has, the size of its memory, how many tasks it can run, and a unique identifier. The
on statement executes a code block on a specific locale.

Domain maps control the binding of index ranges to locales. They can be created as standalone
variables with the dmap type and bound to a domain by placing dmapped <map> after the domain
declaration.

var dommap : dmap (Block(rank=2)) = new dmap (new Block((1l..4,1..4));
var dom : domain (rank=2) dmapped dommap;

creates a 4x4 grid over which the domain indices will be divided in block fashion. Alternatively you can
specify the map directly with the domain

var dom : domain(rank=2) dmapped Block((1l..4, 1..4));

Chapel provides four built-in domain maps called distributions; they are found in
CHPL_HOME/modules/dists.

1. Block - each range is broken into several pieces according to the layout of the locales and all
combinations of the pieces are run on different locales

2. Cyclic - range indices are taken modulo the number of locales along that range (locales may be
arranged over multi-dimensional domains)

3. BlockCyclic - each range is broken into a block with a specified size and the blocks are assigned
modulo the number of locales along that range

4. Replicated - each locale receives a copy of the domain and works independently, without
communicating changes to the data to other locales

Chapel also has a well-defined interface called the DSI for creating new domain maps. It is explained in
CHPL_HOME/doc/rst/technotes/dsi.rst.

Associative domains and arrays use discrete values of any primitive type or class as indices, serving as a
hash table or dictionary. The set of values can be changed with the add () or remove () methods, or
using the += and -= operators; values are also added if used as the index to an array during assignment.
Declare an associative domain by specifying the type. An initial set of values can be given between
braces.

var counting : domain(string) = { "one", "two", "three", "four" };

var testarr : [counting] int;

testarr ("four") = 4;

testarr ("five") = 5; /* or counting.add("five"); counting += "five" */

LOOSE ENDS Chapel By Example - Image Processing

172

Sparse subdomains are a list of values belonging to another domain. Indices are added like an
associative domain. An array backed by a sparse subdomain has a default value arrayname. IRV for
any index not provided in the list. You can only set values for indices that have been specified; they will
not be automatically added to the sparse index list. Declare it by putting sparse before the subdomain

type.

dom : domain(rank(2)) = { 1..ncol, 1l..nrow }

var sparsedom : sparse subdomain (dom) ;

var sparseimg : [sparsedom] uint (8);

sparsedom += (1, 1);

sparseimg(l, 1) = 5;

sparseimg.IRV = 128; /* all pixels but (1,1) have this value now */

Set operations such as union, intersection, and membership tests are being added atop associative
domains.

Classes and records support an object hierarchy, where you can declare a superclass with the subclass:

class subclass : superclass { .. }

Subclasses inherit members and methods from their parents.

IO is done to a file through a channel. These channels implement a generic Reader or Writer
interface. The methods readThis (), writeThis (), and readWriteThis () can be overloaded to
customize IO operations for a class or record. The IO standard module defines the operations supported.

You can embed C code directly in a Chapel source file with an extern block.

extern ({
rgbimage *rgb = NULL;
if (alloc_rgbimage (&rgb, 10, 10) < 0) {
/* handle error */
} else {
/* work on image in C */
}
free_rgbimage (&rgb) ;
}

This requires enabling LLVM support in the compiler, as it is used to parse the C.

CHPL_HOME/modules/standard and CHPL._HOME/modules/packages have many more libraries,
including file system support (FileSystem, Path), a libcurl interface for file transfers (Curl), system calls
(Sys, Time, Spawn), math and number functions (Math, BitOps, FFTW (Fast Fourier Transform),
LAPACK, BLAS, GMP (GNU Multiprecision Library), Norm, UtilMath, LinearAlgebra), an interface to
Hadoop systems (HDFS, HDFSlIterator), tracking of network communication (CommDiagnostics,
startInitCommDiags), regular expressions (Regexp), cryptography (Crypto, Random), and iterators that
can steal work from others if they have nothing to do (AdvancedIters).

CHPL_HOME/doc/rst/technotes describe language features that are still in progress, including partial
compilation of source files into libraries, a REPL, more locale architectures including NUMA, LLVM

LOOSE ENDS Chapel By Example - Image Processing

support, and writing formatted output to strings.

As we have said, the doc, doc/rst/technotes, modules/standards, modules/packages, and examples/primers
directories in CHPL_HOME contain a diverse collection of design and usage notes.

SUM-UP

This brings us to the end of our study of Chapel. It's time to look back and answer the question posed at the
start: Is this a language we can use?

We've seen Chapel in action in pixel-level computations (color conversion and FAST corner detector), at the
matrix level (Gabor filter convolution), and at a more general level (k-means clustering and RANSAC feature
matching). We've used most, but not all, of the language's features, which we can summarize in a list:

Data Structures

arrays (data), domains (indices), ranges (iteration)

classes and records with embedded variables and procedures

standard iterator interface any class or record can provide (these () method)

tuples and enumerations

Parallel Programming
— data-level parallelism breaking up iterations (forall, coforall)
— task-level parallelism based on statements (begin, cobegin)

— synchronization across tasks (atomic, sync, and single variables)

Generic Programming

classes and records programmable by type, fixed-value parameters

function overloading and polymorphism, where clauses to specify type requirements

queried arguments for types and details

variadic argument lists

Language Fundamentals
— argument intents that control writeability and linkage to the caller
— standard control statements with keyword version for single statement and braced version for blocks

— primitive types int, uint, real, imag, complex, bool, where the bit size can be specified if needed

173 SUM-UP Chapel By Example - Image Processing

— programs grouped by modules, with an inherent module per file and access control (public/private)
— extended set of operators, including exponentiation and variable swap

— program constants that can be changed at runtime on the command line, or parameters set at compile
time

Extensibility

— custom iterators

— custom domain maps

But what has it been like programming with the language?

Experience

Writing programs in Chapel has been pleasant. The language fits this problem domain well. Domains and slices
are natural ways to work with images and clearly signal the intent behind the code. Having domain changes re-
allocate arrays is a strong encouragement to properly set them up. Parallelism is easy to add to programs, but
not entirely worry-free. You still need to keep in mind what data is crossing task boundaries and if there might
be races (the default intents prevent this but can be circumvented), and it's not clear how a piece of code will act
on actual hardware — the runtime is a bit mysterious. Generic classes and queried arguments provide the
flexibility for re-usable code. Argument intents make the role of each argument clear, and supporting multiple
output arguments is nice. Interfacing to C is straightforward although a little verbose when needing to use the C
types. The automatic creation and parsing of command-line constants means never having to program a parser
again. Chapel is an expressive language and that is apparent while coding.

We have also found developing in it to be somewhat frustrating. The flexibility of the language and its default
behavior is partly to blame, as is the compiler. Part of Chapel's expressiveness depends on its defaults,
automatically generated constructors, accessors, and iterators, and overloaded operators that uniformly handle
different data types. They reduce clutter in the code and are mostly sensible and intuitive, but we found
ourselves constantly butting up against them while compiling and debugging. The overall impression is that the
language is a bit squirrelly as we were constantly reminded of how much was happening behind the scenes, and
thus how unsure we were of exactly what was going on. The flexibility can be confusing. For example, if out of
habit you type array references with brackets instead of parentheses the program will compile, but the behavior
might not be what you expect (at least for us, “strange results” cleared up after switching the brackets). Or, if
you make a typo in the name of a constructor you will end up silently using the default, which is not what you
want; this happened while developing the circumference class. The behavior of a program can also be
confusing. We're left with the impression that passing arrays around in structures, particularly records, is not
reliable. The data seems to corrupt eventually, and in the worst case the program fails. This happened a few
times developing the RANSAC program, and its final shape, with only primitives stored in the mapinfo and
tryinfo records and the map1to2 and map2to1 arrays being re-generated with the best try, rather than caching
them as the program proceeded, is a result. The compiler did not help. Error messages are sometimes indirect;
if you forget to tell a foral1 loop that a variable outside the loop is being used, the warning message complains
about a bad Ivalue. The compilation stops on the first error, and since the current version is a bit slow the 'fix
typo - compile - fix typo - compile' cycle is tedious. Chapel also only seems to look at code that is being used.
If you test compile a stand-alone library it can come out clean, with errors only appearing when you start calling
the library functions from the main program. The compiler can generate error messages rivaling Clojure stack
traces if it can't resolve an overloaded function, “helpfully” listing a hundred valid type signatures.

174 SUM-UP Chapel By Example - Image Processing

Perhaps this is part of the learning process and we find ourselves in something like an uncanny valley of
confidence where we're starting to assume we know the language while pushing on it and exposing the gaps in
our understanding. We don't yet have a clear idea of what is happening, and there's little feedback about missed
opportunities for optimization or warnings about inefficient code (say, flagging array accesses that may be out of
bounds when the compiler can't prove they are within the array's domain). It's a bit like learning the CUDA
model for memory and execution without the profiling tools to show how you can improve your performance:
there's a lot of stumbling about and trial-and-error, and any conclusions drawn about best coding practices may
be due as much to luck and circumstance as to valid reasons.

Performance

You might have noticed that for a High-Performance Computing language we haven't talked much about how
fast Chapel programs run, other than to compare different implementations against each other. There's a few
reasons for this. Most importantly the team has been focused on the language definition and only recently started
working on optimizing the code the compiler produces. Their presentations from the end of 2014 acknowledge
that performance is poor but is getting better. We shouldn't be surprised if our runs are slow. Another reason is
that we can't compare the programs we've developed here directly with our internal versions, either because
we've changed the approach or more often the data type. As an example we tend to work with integer images,
and scale the greyscale plane and the Gabor kernel filter before running the convolution; our implementation
here runs in floating point. There are also things we can't explain, such as where to best use foral1 (top level?
everywhere? spot placement?). Finally, there is little feedback about how to optimize programs. It's a bit of a
black box. Our impression, though, from these programs and others in the language shootout benchmarks is that
Chapel is slow compared to C, and some constructs, namely reductions, are borderline unusable.

Maybe a story is in order. The k-means clustering was our first thought at writing a parallel program in Chapel
because we had already gone through the exercise in C. Our serial version had run too slowly, so the first
change we made was to split the image into equal parts, one per thread, converting the next-pass clusters into
per-thread sub-totals and combining them at the end. In other words, it was the approach taken for kmeans_v1.
The code edits took an hour and gave us about a 3.5X speed-up with four cores/threads. We then ported the
algorithm over to CUDA, where the biggest changes needed were to fit into the GPU's memory model. The
running time improved by a factor of 6. The Chapel kmeans programs, in comparison, were 15 times slower
than the serial version, or 40% slower if compiled with ——fast. Again, the differences between the C and
Chapel versions affect the behavior of the clustering and the results are not directly comparable, but we have
tried to have the same amount of work (same image so pixel count is the same, limiting the number of passes to
be the same) so the rough result stands: the Chapel program is slower.

[For a better comparison, we've re-worked kmeans_v2.chpl to use only integers. This version converts each
color plane to 8-bit, ie. clrimage -> rgbimage, and changes the types in the cluster record and procedure
arguments from real to int. There are still differences in the algorithm that cause the Chapel version to take
two or even three times as many iterations to converge, but the per-iteration time of the integer version is only
20-40% slower than the threaded C version. The per-iteration time of the float version is three or four times
slower than the integer, which gives us the 40% slowdown to the serial C version.]

As Chapel evolves it is generating faster code. The Gabor kernels are running 2-4 X faster in 1.17 (April 2018)
compared to 1.11 (April 2015); this is with --fast compilation. The kmeans programs are 20-30% faster, and

both RANSAC versions 5 X. Without --fast the timing number are more stable. The Gabor kernel timing ranges
from 20% slower to 40% faster, the kmeans even up to 20% faster, and RANSAC has a 2 X improvement.

Work In Progress

Chapel is still in active development. There are several language features that have not been implemented or

175 SUM-UP Chapel By Example - Image Processing

will change. Some, such as strings and data hiding in classes/records, seem fundamental and pose the biggest
risk for code re-work in the future. Others like the order of atomic operations over a distributed network hint at
design issues that are outside our experience. (One reason for not trying locales and domain maps is that we
haven't used that kind of hardware.) Many features are partially implemented and not yet well documented, or
have bits and pieces of text describing them scattered about between the modules, docs, and examples
directories. With each new release new find a few programs stop compiling. Fixes are small and make sense,
but emphasize that the language and libraries are not yet stable. And of course there are bugs.

Any of these mean that there might be conclusions in these examples that are not, or should not, be valid,
another example of trial-and-error learning. Two that come to mind are the decision not to use enumerations as
constants or the recommendation not to use arrays-of-arrays as they cannot be used as arguments. Both
apparently should work. This is not a reason we should reject using Chapel, only something to be kept in mind.
The language will continue to evolve, and we must be prepared to move with it.

One piece we would like to see is CUDA support in the runtime, for both practical reasons and curiosity.
Practical because it's the parallel environment most accessible to us and which has shown significant benefits,
but we also wonder about how well the language maps to the GPU and handles the constraints of the hardware,
especially the memory model.

Overall Conclusion

Early on, about a quarter of the way through this project, we made a placeholder note in the outline here that an
example of a conclusion might be "Performance not there yet, will follow. Good for prototyping." That was a
prescient remark, for it is our conclusion. Chapel is a comfortable language for programming for us and we
expect it will get better with each half-yearly release. Its lineage is clear, with roots in the world of C and Unix,
and this is the environment we use. Should we need to port a prototype back into that world, say the kd-tree
class or the RANSAC algorithm, it seems straightforward enough to do. But first we need to determine if
RANSAC can be tweaked and its accuracy with scaled images improved. Onward to the next project ...

Feedback

And that brings us to the end of the text. If you have comments or feedback, they would be very much
appreciated. We can best be reached by e-mail at chapel by ex@primordand.com. Thank you for your time
and attention.

176 SUM-UP Chapel By Example - Image Processing

mailto:chapel_by_ex@primordand.com?subject=Chapel%20by%20Example%20comments

	INTRODUCTION
	AN EXAMPLE
	OVERVIEW
	INSTALL
	Compiling and Running a Chapel Program

	IMAGE INTERFACE (png)
	Introduction
	C Library (img_png_v1.c, test_png.c)
	C interface from Chapel (rw_png_v*.chpl)
	Primitive Types
	Variable Declarations
	Function Prototypes
	External Linkage (rw_png_v1.chpl)
	Aside: Embedding C Requirements (rw_png_v1b.chpl)
	Structural Types (rw_png_v2.chpl)
	Modules (rw_png_v3.chpl)
	Aside: Variadic Procedures (rw_png_v3b.chpl)

	Aside: Main / Program Organization (rw_png_v4.chpl)

	Wrap-Up
	Exercises
	Files

	COLOR CONVERSION (color)
	Introduction
	Aside: Color Spaces
	Language Description
	Expressions and Operators
	Statements
	Assignments
	Swap
	If .. then .. else
	Select
	While .. do, do .. while
	Here j is a constant that is created locally for each pass of the loop.
	for
	break, continue, label
	use, require
	I/O

	Enumerations
	Tuples

	Arrays and Ranges (lab_v1.chpl)
	Domains (lab_v2.chpl)
	Program Organization (color_convert.chpl)
	Aside: First-Class Functions (color_convert_v1b.chpl, ip_color_v1b.chpl)

	Wrap-Up
	Exercises
	Files

	GABOR FILTER (gabor)
	Introduction
	Aside: Edge Detectors
	Subdomains and Subranges
	Range Commands
	Domain Commands
	Array Commands

	Gabor Filters (gabor_v*.chpl)
	Indexing with Offsets (gabor_v1.chpl)
	Indexing with Zippers (gabor_v2.chpl)
	Indexing with Translations and Zippers (gabor_v3.chpl)
	Reductions and Intermediate Results (gabor_v4.chpl)
	Array Slicing (gabor_v5.chpl)
	Array Multiplication and Reduction (gabor_v6.chpl)
	Performance

	Wrap-Up
	Exercises
	Files

	PARALLEL PROGRAMMING (gabor_par, lab_limits)
	Introduction
	Data Parallelism (lab_limits)
	Limits Found in Serial (lab_limits_ser)
	Parallelism with Local Updates (lab_limits_parv1)
	Parallelism with Per-Pixel Storage (lab_limits_parv2)
	Performance

	Task Parallelism (gaborbank)
	Gabor Filter Bank (gaborbank)

	Synchronization
	Wrap-Up
	Exercises
	Files

	K-MEANS CLUSTERING (kmeans)
	Introduction
	Aside: Clustering

	Implementation (kmeans_v1)
	Module: Random
	Module: Sort

	Atomic Variables (kmeans_v2)
	Performance
	Wrap-Up
	Exercises
	Files

	FAST CORNER DETECTOR (fast)
	Introduction
	Aside: Corner Detectors
	Iterators
	Custom Iterators (fast_v1, test_fast_v1)
	Class methods this() and these() (ex_class.chpl)
	FAST Corner Detector (fast_v1.chpl, test_fast_v1.chpl)

	Corner Suppression (fast_v2, test_fast_v2)
	Generic Classes and Records
	Generic Procedures
	Implementation (fast_v2, test_fast_v2)

	Wrap-Up
	Exercises
	Files

	RANSAC FEATURE MATCHING (ransac)
	Introduction
	Aside: kd-Trees (kdtree, test_kdtree)
	Construction
	Search
	Implementation (kdtree, test_kdtree)

	Aside: Transforms and Best Fits
	Implementation (ransac_st, ransac_rst)
	Operation
	Wrap-Up
	Files

	PRACTICAL MATTERS
	Debugging
	Exceptions and Segfaults
	Generated Code
	Tasks
	Bug Submission and Test Cases
	Resource Usage

	LOOSE ENDS
	SUM-UP
	Experience
	Performance
	Work In Progress
	Overall Conclusion
	Feedback

