
Z-Wave Humidity-Temperature Sensor Project

The demo programs that come with the Z-Wave 7.0 DevKit don't involve much work. You change a constant for
the radio frequency, compile, flash the board, and press a few buttons and watch a few LEDs. The
documentation recommends as a next step extending one of the demo programs for your application. But the
project setup is complicated, the interaction with the Z-Wave Application Framework (ZAF) opaque, and how to
make changes unclear.

We set out to write a demo program that would fill in these gaps. For one, the devkit board includes some
hardware that isn't used in any of the demos, so our program will use it: a humidity-temperature sensor and the
LCD. For another, we'll start with a blank project to learn what's needed for libraries and hardware drivers, how
code is organized within Simplicity Studio, and how the build process works. For a third, we'll add functionality
and commands within the framework to see what it does and how its components are put together. Our demo
will allow you to read the sensor via Z-Wave or to start a data logging run that will periodically send readings to
the controller; in both cases we'll also see the readings on the LCD.

The program will be built in several steps. First we need to set up the equivalent of a "Hello World" program
within the application framework, the simplest program that will compile. Second we'll figure out how to work
with the hardware, first the buttons and LEDs, then the humidity-temperature sensor, then the LCD. These steps
will involve working with libraries and code in the SDK. Third we'll add Z-Wave support, first inclusion and
exclusion, then getting a correct Node Information Frame (NIF) and adding CC_VERSION, next implementing
CC_SENSOR_MULTILEVEL to read the sensor and CC_CONFIGURATION for starting a logging run, and
finishing by setting up security (just S0). Fourth we'll look at the differences between our demo and the full
programs provided with the DevKit.

This last point is important. Undoubtedly there are FAEs at Silicon Labs that will shake their heads at what
we're documenting here: it may not follow best practices, it doesn't follow their coding standards, and it doesn't
try to be Z-Wave compliant. The demo is meant to be a starting point to unravel a rather large knot. We hope
the result provides the background one needs to develop a good production program.

Here is a tarball with the entire project; you'll also find links to separate tarballs for each step at the start of their
section. If it's easier to read this text in one document, you'll find a PDF here.

Step 1: Setup and Framework

Step 2a: Hardware - Buttons and LEDs

Step 2b: Hardware - Humidity / Temperature Sensor

Step 2c: Hardware - LCD

Step 3a: ZWave - Inclusion and Exclusion

Step 3b: ZWave - NIF

Step 3c: ZWave - CC_SENSOR_MULTILEVEL (reading)

Step 3d: ZWave - CC_CONFIGURATION (logging)

Step 3e: ZWave - Security

../html/zwave_htsensor_step3E.html
../html/zwave_htsensor_step3D.html
../html/zwave_htsensor_step3C.html
../html/zwave_htsensor_step3B.html
../html/zwave_htsensor_step3A.html
../html/zwave_htsensor_step2C.html
../html/zwave_htsensor_step2B.html
../html/zwave_htsensor_step2A.html
../html/zwave_htsensor_step1.html
../pdf/zwave_htsensor.pdf
../data/HTSensor.tar.bz2

Step 4: Application Framework

The Silicon Labs specs we used in developing the program include

UG381 ZGM130S Zen Gecko Wireless Starter Kit User's Guide

devkit hardware description

INS14280 Z-Wave 700 Getting Started for End Devices

devkit bring-up, first demo program

INS14278 How To Use Certified Apps in Z-Wave 700

demo program description

INS14259 Z-Wave Plus V2 Application Framework SDK7

framework description and how to use

INS14281 Z-Wave 700 Getting Started for Controller Devices

Z/IP gateway program and GUI

SDS13781 Z-Wave Application Command Class Specification

most command classes

SDS13812 Multilevel Sensor Command Class

list of assigned Multilevel Sensor types and scales

DSH14299 ZGM130S Z-Wave 700 DiP Module Data Sheet

part of the Simplicity Studio SDK documentation

Si7021-A20 I2C Humidity and Temperature Sensor Data Sheet

chip specification, also how to read values

LCD Module LS013B7DH03 Device Specification

signal timing

We're using the Z-Wave 700 DevKit and Simplicity Studio 4.2, running under Linux. The SDK was version
7.12.1. We will need two files from the Gecko SDK, version 2.4. We're using the Python GUI for the Z-Wave
gateway software to communicate with the device, and our Zpiffer program to monitor network traffic.

One last note. Much of the text will describe the evolution of the source code as we build on previous steps.
There will be links to code snippets showing the most important changes or functionality, but if anything is
unclear, try looking at a diff of the file to the previous step or the original source in the SDK. Let us know if
something still doesn't make sense so we can fix the text. As always, comments about the project or write-up are
welcome at by sending us an e-mail.

Step 1: Setup and Framework

mailto:support@primachvis.com?subject=HT%20Sensor%20project
../html/zwave_zpiffer.html
https://media.digikey.com/pdf/Data%20Sheets/Sharp%20PDFs/LS013B7DH03_Spec.pdf
https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf
https://www.silabs.com/documents/login/miscellaneous/SDS13812-Multilevel-Sensor-Command-Class.xlsx
https://www.silabs.com/documents/login/miscellaneous/SDS13781-Z-Wave-Application-Command-Class-Specification.pdf
https://www.silabs.com/documents/login/user-guides/INS14281.pdf
https://www.silabs.com/documents/login/reference-manuals/INS14259.pdf
https://www.silabs.com/documents/login/user-guides/INS14278.pdf
https://www.silabs.com/documents/login/user-guides/INS14280.pdf
https://www.silabs.com/documents/login/user-guides/ug381-brd4202a-user-guide.pdf
../html/zwave_htsensor_step4.html

The code for this part of the demo is found here.

Build Process
A Java package within Simplicity Studio generates a makefile and directory hierarchy based on a project's
settings, accessible by right clicking on a project in the Explorer window on the left and choosing Properties.
The builder creates a directory named after the build configuration ('GNU ARM v7.2.1 - Debug' for example)
and creates sub-directories for each directory in the project. It puts a subdir.mk makefile in each, which when
run will create a header dependency list (*.d) and object file (*.o). The final binaries are put in the build
directory.

The project settings are stored in the file .cproject. You can see how the commands in the makefile are built up
from entries in the C/C++ Build Settings part of the Properties dialog (either by right-clicking on the project
name in the Explorer, or under the Project menu entry). The long command line for the
compiler/assembler/linker contains the Includes files (-I prepended to each) and Symbols (-D), with checkboxes
in other entries adding flags, as well as the 'Other flags' list found under Miscellaneous. Compiling is done in
the sub-directories by the subdir.mk files; the top makefile links the binary in AXF format and converts it to
BIN, HEX, and S37 formats. Each source file has its own make target, although the commands are the same
except for the file names.

Build command found in Project Properties. Arcs indicate source of command line options within dialog.

We prefer to link to source files in the SDK rather than copying them into the project. If done within Simplicity
Studio the links do not appear in the file system. They'll appear in the Project Explorer window with an arrow in
the file icon, and will be listed in the Linked Resources/Linked Resources entry of the Project Settings window.
When creating the Makefile the Java package will include a target for each source file with the link path
expanded. Header files, however, cannot be treated this way. They must either be found in a directory in the
include path, or you must symlink them in the file system (that is, not link them within Simplicity Studio).

You'll find abbreviations for some directories under Resource/Linked Resources/PathVariables, of which
STUDIO_SDK_LOC is useful, and two more under C/C++ Build/Build Variables, which provides
StudioSdkPath to use within the build dialog.

../data/HTSensor_Step1.tar.bz2

Project Properties defining abbreviations. Use STUDIO_SDK_LOC except in the build settings, where the
variable is StudioSdkPath.

You can delete the build directory ('GNU ARM v7.2.1 - Debug') at any time and the Build command within
Simplicity Studio will recreate it. Once it exists, if the compiler is on your path, you can run make from the
command line. It's found at simplicity/developer/toolchains/gnu_arm/7.2_2017q4/bin/. It might be possible to
recreate the makefile from the .cproject information, but it seems easiest to let the Java program do the work.

SDK Contents
We'll see as we go along that the files and libraries we need are scattered throughout the SDK directory.

To keep paths short, we'll use SDK for <simplicity install dir>/developer/sdks/zwave/v7.12.1. For SDK you
should substitute STUDIO_SDK_LOC everywhere within Simplicity Studio, except in the build settings when
you would use StudioSdkPath.

directory contents
${SDK}/ZWave/lib slave and controller libraries
${SDK}/ZWave/API header files
${SDK}/ZAF/ApplicationUtilities application framework
${SDK}/ZAF/CommandClasses some ZWave commands
${SDK}/util/third-party/freertos/Source FreeRTOS source
${SDK}/ThirdParty/Freertos/include FreeRTOS headers
${SDK}/Processor/gecko devkit configuration, including pins, clocks, UART
${SDK}/Components modules for timers, assertions, event groups, queues
${SDK}/hardware/kit display hardware and I2C bus

devkit board is EFR32FG13_BRD4255A
${SDK}/platform/emdrv micro-controller drivers
${SDK}/platform/emlib peripherals library
${SDK}/platform/Device/SiliconLabs/ZGM13 devkit board hardware access
${SDK}/platform/bootloader boot code
${SDK}/platform/CMSIS another hardware abstraction layer
${SDK}/Apps ZWave demo programs

ZWave Application Framework
The ZWave Application Framework is built atop FreeRTOS, a simple operating system. The OS provides tasks
(processes/threads), events for communication, and queues for storing them. It offers semaphores/mutexes to
synchronize access to queues and other resources. Timers can trigger one-off callbacks at a point in the future,
or fire periodically. At a low level the OS has interrupt support and memory allocation.

We can group the framework's files into the following categories:

1. Framework - common defines and access to global variables.

2. Hardware - devkit components including LEDs and indicator, and buttons and sliders; on-chip blocks
like I/O pins, an ADC, and UARTs. The key file is board.h.

3. ZWave Network - learn mode and SmartStart. The key file is ZAF_network_learn.h to monitor
progress, although most of the process happens automatically within the framework.

4. ZWave Communication - outgoing packets (with separate buffers for requests and responses) and
incoming frame router (per frame type or command, either explicitly for application commands or
indirectly via the CommandPublisher), endpoint management, lifeline support, multicasting, security.
The key files are ZW_TransportSecProtocol.h and ZW_TransportEndpoint.h, and ZAF_CmdPublisher.h
to route frames to command classes.

5. Events - user event ("job") queues. The key file is ev_man.h.

6. Software Timer - interface to timer, EM4 hibernation management. The key file is AppTimer.h.

7. Non-Volatile Memory - access to persistent storage of objects. The key file is ZAF_nvm3_app.h.

8. Power Management - chip power mode. The only file is ZAF_PM_Wrapper.h.

9. Command Classes - implementation of several common ZWave commands.

The framework essentially sets up an event loop, with three handlers for incoming frames, ZWave events from

frames ZAF has handled, and hardware events. Dealing with incoming packets is a bit confusing. One handler,
registered with the framework, routes based on the type of packet: single- or multi-cast, node update, or security
event. A second, implementing a stub in the transport protocol, gets the frame's contents unpacked into a per-
command class structure (which are grouped in a giant union) and must send it to the appropriate command class
handler. A third router, the CommandPublisher, can be called within the first, single-cast, handler; it will do this
unpacking and itself call the command class. Outgoing packets are easier, as the command classes put them in
the appropriate REQUEST or RESPONSE transmit buffer.

Creating A Project
We want to start with a blank slate and do the minimum necessary to get a project to build. To do this we created
a single source file with a single function definition, then iteratively changed project and build settings or linked
files or added to the source, fixing each compile problem that arose. Our project directory structure will be a bit
different than the demo programs; see the table for the layout. You may notice Simplicity Studio making several
more entries under the project. The build directory 'GNU ARM v7.2.1 - Debug' exists on disk. 'Includes' and
'Binaries' do not. You will see them only within Simplicity Studio. The first are the header files from the Project
Properties list, the second has links to the object files.

directory custom files (on disk) linked files

hw/ LCD drivers other hardware files

src/ application, ZAF headers, I2C header

ZAF_AppUtil/ modified framework files ZAF source files

ZAF_CC/ ZWave command classes default command classes

GNU ARM v7.2.1 - Debug/ none auto-generated directory

To begin, choose Project -> New -> Silicon Labs MCU Project form the menu. If the DevKit board is plugged
in the boards, part, and SDK will be filled in correctly. Pick Empty Project then enter a name.

First dialog to create a new project. Boards, Part, and SDK are
automatically detected by Simplicity Studio. Follow the Next chain

from here.

Open the Project Properties dialog and verify Simplicity Studio has created the four Linked Resources/Path
Variables: STUDIO_SDK_LOC, STUDIO_TOOLCHAIN_LOC, STUDIO_APACK_COMMANDER_LOC,
STUDIO_APACK_LOC.

Create the file src/HTSensor1.c and put one function, ApplicationInit(), in it.

To get this to compile requires:

1. Adding ${SDK}/ZWave/API to the C/C++ Build/Settings Include list.

2. Adding the path ${SDK}/ZWave/lib and the library ZWaveSlave to Linker/Libraries.

3. Setting the linker script under Properties/Memory Layout to
${SDK}/ZWave/linkerscripts/zgm13-zw700.ld.

4. Creating a folder hw/ under the project.

5. Linking the file ${SDK}/platform/Device/SiliconLabs/ZGM13/Source/system_zgm13.c under hw/.
This is code for the devkit board clocks.

6. Linking ${SDK}/platform/Device/SiliconLabs/ZGM13/Source/GCC/startup_zgm13.S under hw/. This
is code called when the devkit board boots, for example registering interrupt handlers.

7. Adding ${SDK}/platform/Device/SiliconLabs/ZGM13/Include to the C/C++ Include list.

../html/zwave_htsensor_code.html#Step1ApplicationInit

8. Adding 'ZGM130S037HGN1=1' to the C/C++ Symbols list. This includes the right header file for the
board.

9. Adding ${SDK}/platform/CMSIS/Include to the C/C++ Include list.

10. Adding the path ${SDK}/SubTree/rail-import/platform/radio/rail_lib/autogen/librail_release and the
library rail_efr32xg13_gcc_release to Linker/Libraries. This is a library for testing and adjusting the
radio when bringing up a new design.

11. Linking the file ${SDK}/ZAF/ApplicationUtilties/application_properties.c under ZAF_AppUtil/. The
bootloader uses this code to determine the application version.

12. Adding 'EMR32ZG=1' to the C/C++ Symbols list. If not defined application_properties.c will be an
empty file.

13. Creating the file src/config_app.h. The minimum contents define the symbols APP_VERSION,
APP_REVISION, APP_PATH, APP_MANUFACTURER_ID, APP_PRODUCT_ID, and an enum
_PRODUCT_TYPE_ID_ENUM; all are needed by the boot loader for version tracking. The values are
placeholders and will not pass ZWave certification (especially the manufacturer ID).

14. Adding ${SDK}/platform/bootloader to the C/C++ Include list.

15. Adding {$workspace_loc:/${ProjName}/src} to the C/C++ Include list, where ProjName is whatever
you used when creating the project.

Use ${STUDIO_SDK_LOC} instead of our abbreviation ${SDK}, except when changing values in the Project
Properties dialog; then, use ${StudioSdkPath}. All file linking is done within Simplicity Studio by right clicking
in the Project Explorer and choosing New -> File, then checking the Link box under the Advanced button and
filling in the path.

Project contents. Note linked files
(with arrows on icons) exist only in

Simplicity Studio, not on disk.

Or in table form (since the listing will soon be too long for a screenshot)

../html/zwave_htsensor_code.html#Step1configapp

hw/ src/ ZAF_AppUtil/ ZAF_CC/
config_app.h
HTSensor1.c

linked within Simplicity Studio
startup_zgm13.S application_properties.c
system_zgm13.c

Stepping back, we've had to add boot code (ZGM13), libraries for Zwave and radio testing, and some application
framework startup code to our simple "application". We added four directories to the include list, defined two
symbols to enable hardware functionality, and linked to three source files that will be compiled along with our
application. We also had to define a minimal set of version and product information for the framework.

The program will now compile. Object files are put in the build directory, and the Binaries entry in the project
will have a .hex file that can be flashed to the devkit, as described in INS14280 Section 6. Nothing will happen,
yet. Let's add in hardware support, starting with the buttons and LEDs.

Step 2a: Hardware - Buttons and LEDs

The code for this step is found here.

You must implement two functions for the framework, the first for initializing the hardware and application, the
second the main task. A FreeRTOS task never returns, so the second function contains an infinite loop. The
framework generates events for the system timer, hardware functions, or incoming ZWave traffic. These events
are gathered in a queue that has been wrapped to handle event notifications (QueueNotify) and routing
(EventDistributor); these wrappers are found in the Components directory in the SDK. The first thing our task
must do is to create the event queue, wrap it, and register the result with the framework.

The demo programs define two sets of application events, putting one enumeration EVENT_APP in the file
events.h and the other enumeration EApplicationEvent in the source code. The first uses a local "job" queue
created for events outside the framework, and signals state changes during learning, non-volatile memory access,
power and battery management, and within the application. We won't need to use these, and omit the file. The
second is a group of four ZAF events, from the timer, incoming frames, ZWave state, and hardware and
application events. These we do need. Each event needs a handler. ZAF provides one for the timer, we'll define
one for the hardware, and leave a stub for the other two for now.

The expansion board has four buttons and four LEDs. Two of each tie to components on the main board. The
functionality we'll eventually implement is

Button 1 ZWave inclusion/exclusion
Button 2 toggle data logging
Button 3 read temperature
Button 4 read humidity

../data/HTSensor_Step2A.tar.bz2
../html/zwave_htsensor_step2A.html

We'll flicker LED2 while we're logging sensor readings, and turn LED4 on when a single read is in progress.
LED1 is the indicator signalling that the node is in learn mode or is included. For logging, the number of
samples to take and the time between them will be fixed for now, until we add a ZWave configuration command
to set them. For Step 2a we'll use a timer to simulate the sensor read while driving LED4 correctly, and Button 2
will just toggle the logging mode (ie. turn LED2 on or off).

Implementation
There are two header files in the SDK that define button and LED operations. Only one, board.h, must be
included in our application. The other will be found by passing a -D define to make, which is done by adding a
symbol to the C/C++ Build items in the project's Properties. Including board.h requires adding many directories
to the include path and linking files to the project:

1. Add ${SDK}/ZAF/ApplicationUtilities to the C/C++ Include list.

2. Add ${SDK}/platform/emlib/inc to the C/C++ Include list.

3. Add 'RADIO_BOARD_ZGM130S = 1' to the C/C++ Symbols list.

4. Add 'EXT_BOARD_8029A = 1' to the C/C++ Symbols list.

5. Link ${SDK}/ZAF/ApplicationUtilities/board.c under ZAF_AppUtil/.

6. Add ${SDK}/platform/emdrv/gpiointerrupt/inc to the C/C++ Include list.

7. Link ${SDK}/platform/emdrv/gpiointerrupt/src/gpiointerrupt.c under hw/.

8. Link ${SDK}/ZAF/ApplicationUtilities/board_indicator.c under ZAF_AppUtil/.

9. Link ${SDK}/ZAF/ApplicationUtilities/AppTimer.c under ZAF_AppUtil/.

10. Link ${SDK}/platform/emlib/src/em_letimer.c under hw/.

11. Add ${SDK}/Components/SwTimer to the C/C++ Include list.

12. Add ${SDK}/Components/DebugPrint to the C/C++ Include list.

13. Link ${SDK}/ZAF/ApplicationUtilities/ZAF_uart_utils.c under ZAF_AppUtil/.

14. Add ${SDK}/Components/Assert to the C/C++ Include list.

15. Link ${SDK}/ZAF/ApplicationUtilities/EventHandling/zaf_event_helper.c under ZAF_AppUtil/.

16. Add ${SDK}/Components/EventDistributor to the C/C++ Include list.

17. Add ${SDK}/Components/QueueNotifying to the C/C++ Include list.

18. Add ${SDK}/ZAF/ApplicationUtilities/EventHandling to the C/C++ Include list.

19. Add ${SDK}/ThirdParty/Freertos/include to the C/C++ Include list.

20. Add ${SDK}/ThirdParty/Freertos/include/gecko to the C/C++ Include list.

21. Add ${SDK}/util/third_party/freertos/Source/portable/GCC/ARM_CM4F to the C/C++ Include list.

22. Add ${SDK}/Components/Utils to the C/C++ Include list.

23. Add ${SDK}/Components/NodeMask to the C/C++ Include list.

24. Add ${SDK}/ZAF/ApplicationUtilities/PowerManagement to the C/C++ Include list.

25. Modify src/config_app.h to include defines for GENERIC_TYPE, SPECIFIC_TYPE,

DEVICE_OPTIONS_MASK, MAX_TXPWR, and MEASURED_0DBM_TXPWR. The latter two will
eventually end up in src/config_rf.h in Step 3.

Items #1-11 are needed to drive the devkit boards, with #5-7 for buttons, #8 for LEDs, and #9-11 for timers.
Items #15-21 give us events and handlers for the framework. The others are support functions. In the
application we use the DPRINT debug macro (#12) to write messages to the UART, which we can monitor in
Simplicity Studio on the device console. This requires including the ZAF_uart_utils.h header file in our source
file (#13). The SizeOf.h header (in #22) provides a macro sizeof_array which we use as a shortcut. AppTimer.h
(from #9) provides a timer we can set and run within the application. The other header files we must include
define functions and constants for the framework.

The application contains just a few functions. ApplicationInit() sets up the program and hardware, and
ApplicationTask() finishes set up and contains the main event loop. We have one event handler, handle_event(),
that reacts to button presses, and a callback simulate_ht() that runs when the timer that's pretending to be a
sensor read finishes.

In the ApplicationInit() function we do any set-up needed before starting the FreeRTOS application task. This
includes the timer (call to the framework function AppTimerInit()), initializing framework variables (for the
radio frequency, basic NIF information, and security), the devkit boards (framework function Board_Init()), and
UART (framework function ZAF_UART0_enable()) once we're using the DebugPrint module. The function
finishes by registering the task function, which allows FreeRTOS to start it.

The ApplicationTask() function continues set-up before entering the event loop. We tell the timer about the task
with AppTimerSetReceiverTask(), and finish framework setup by calling ZAF_Init(). We create a small event
queue with the FreeRTOS function xQueueCreateStatic(), wrap it with the event notifier by calling
QueueNotifyingInit() and ZAF_EventHelperInit(), and then set up the event router with
EventDistributorConfig(). We finish hardware setup for the buttons with Board_EnableButton() and
Board_SetLed(), and create a software timer to simulate sensor reads with AppTimerRegister(). Finally we go
into the infinite loop, using EventDistributorDistribute() to direct events to the appropriate handler.

handle_event() pulls events from the queue with xQueueReceive. It compares them to
BTN_EVENT_SHORT_PRESS(BOARD_BUTTON_PB[1-4]) to determine which button has been pressed, and
reacts appropriately. Use Board_SetLed(BOARD_LED[1-4], LED_[OFF|ON]) to change a LED, and
TimerStart(&timer, time_in_ms) to create a small delay before using simulate_ht() to turn off LED4.

The demo programs include many global variables. We've tried to reduce them as much as possible, only
keeping those that aren't passed between framework functions or which must be statically allocated. The
framework, for example, must always be able to see the NIF structure, radio configuration, and security keys, as
well as an overall ZWave configuration. The event queue is needed in the handlers. Our application must have
the timer always available, a buffer to hold the debug log, and a counter for the simulated log.

The call to ZAF_Init() pulls in still more files and include directories.

1. Add ${SDK}/ZAF/ApplicationUtilities/TrueStatusEngine to the C/C++ Include list.

2. Add ${SDK}/ZAF/CommandClasses/Common to the C/C++ Include list.

../html/zwave_htsensor_code.html#Step2Asimulateht
../html/zwave_htsensor_code.html#Step2Ahandleevent
../html/zwave_htsensor_code.html#Step2AApplicationTask
../html/zwave_htsensor_code.html#Step2AApplicationInit

3. Link ${SDK}/ZAF/ApplicationUtilities/ZW_TransportSecProtocol.c under ZAF_AppUtil/.

4. Link ${SDK}/ZAF/ApplicationUtilities/ZW_TransportMulticast.c under ZAF_AppUtil/.

5. Link ${SDK}/ZAF/ApplicationUtilities/ZAF_command_class_utils.c under ZAF_AppUtil/.

Since we're not hooking up ZWave yet, we'll make local copies of some of the framework files and remove
functionality so they compile. In Step 3 we'll restore the edits and talk more about what's going on. From $
{SDK}/ZAF/ApplicationUtilities

1. Copy ZAF_TSE.c into ZAF_AppUtil/, remove the include of association_plus.h and comment out the
call to handleAssociationGetnodeList(). This is so we don't have to pull in association groups.

2. Copy ZW_TransportEndpoint.c into ZAF_AppUtil/, remove the inclusion of multichannel.h, and
comment out the call to CmdClassMultiChannelEncapsulate(). Also add a stub in our application
program for Transport_ApplicationCommandHandlerEx(), which requires including the header files
ZW_classcmd.h and ZAF_types.h (which are already on the include path).

The project now contains 17 files between the hw/, src/, and ZAF_AppUtil/ directories, although most are links
to the SDK.

hw/ src/ ZAF_AppUtil/ ZAF_CC/
config_app.h ZAF_TSE.c
HTSensor1.c ZW_TransportEndpoint.c

linked within Simplicity Studio
em_letimer.c application_properties.c
gpiointerrupt.c AppTimer.c
startup_zgm13.S board_indicator.c
system_zgm13.c board.c

ZAF_command_class_utils.c
zaf_event_helper.c
ZAF_uart_utils.c
ZW_TransportMulticast.c
ZW_TransportSecProtocol.c

In our application we find six functions.

function role description

handle_event button press set LEDs, simulate sensor actions

handle_dummy placeholder empty ZWave command handler

simulate_ht placeholder turn off LED showing logging

ApplicationInit ZAF pre-task system setup

ApplicationTask ZAF post-task setup and event loop

Transport_ApplicationCommandHandlerEx ZAF empty ZWave command handler

The project compiles, the LEDs show button functionality is working, and you can monitor events in the debug
log console (by right clicking on the J-Link adapter, launching a console, picking the Serial 1 tab, and typing a

return there to start the link).

Console trace of button 3 press. The framework
generates lines starting with 'btn'.

Next we'll access the sensor.

Step 2b: Hardware - HT Sensor

The code for this step is found here.

Just an aside, to copy a project in Simplicity Studio right-click in the Project Explorer and choose Import ->
MCU Project. Type the existing project name in the dialog, click through the second screen, and type the new
name in the third. Then look at the new project in the Explorer window to make sure all linked files exist and
check the project's Properties for the build configuration and settings (we seem to have two versions of GCC,
and the first one, GNU ARM 4.9.3, is old and won't compile the program).

A recap of our progress: We've created a program that runs in the ZWave Application framework. To an empty
project we had to add code from the SDK to initialize and boot the devkit board, which needs some small
interactions with the framework to get versions. We then added code to start an event handler in the framework,
which pulled in many operating system functions as well as ZWave functionality, which we've disabled or
removed for the moment until we're done with the hardware. We've added support for buttons and LEDs which
brought in another large batch of include files and driver code. Much of the complexity in the build comes from
pieces that are scattered throughout the SDK, so we end up with long include paths and many linked source files.

Now we'll access the humidity-temperature (HT) sensor on the devkit board. Communication is done over an
I2C bus. According to the sensor's datasheet, its address on the bus is 0x80. There are 16 command bytes to
read the sensor, operate the heater, and read product identification bytes. The commands we need are

READ_H_HOLD 0xE5
READ_T_HOLD 0xE3
READ_T_AFTER_H 0xE0
READ_ID2_BYTE1 0xFC
READ_ID2_BYTE2 0xC9

It is slightly more efficient to read both the humidity and temperature together (READ_T_AFTER_H).

../data/HTSensor_Step2B.tar.bz2
../html/zwave_htsensor_step2B.html

We use I2CSPM_Transfer() to execute a command. It goes in a loop where we wait while the return value is
i2cTransferInProgress, or give up after a fixed number of attempts (2). The function takes an
I2C_TransferSeq_TypeDef data structure, defined in platform/emlib/inc/em_i2c.h, which has the destination
address, a flag specifying read and/or write operation, and two byte array pointers plus length specifications, one
(buf[0]) for writing and the other (buf[1]) for reading.

To read the sensor in our function read_HT() the write buffer will contain one byte, the command, and the read
buffer must have two. Assuming the read is successful the final return value will be i2cTransferDone and we
can convert the read buffer into values following the formulas in the datasheet:

RH = ((read_byte0 << 8) + (read_byte1 & 0xfc)) - 6000

T = ((((read_byte0 << 8) + (read_byte1 & 0xfc)) * 21965) >> 13) - 46850

The humidity is in milli-percent and must be clipped to the range 0 t/m 100,000. Temperature is in milli-degrees
and the formula in the datasheet can overflow 32 bits, so we've scaled constants down by 8.

To read the product information in verify_sensor() the write buffer will contain two bytes to hold 0xFC and
0xC9, and the read buffer must have eight. The first byte returned will be 0x15 for the Si7021 sensor.

In setup_i2c() we define the pin layout and clocks for the bus by filling in an I2CSPM_Init_TypeDef structure
and passing it in a call to I2CSPM_Init(). None of the i2cspmconfig.h files under ${SDK}/hardware/kit/SLW*
has a setup that matches the description in UG381, the devkit spec, so we have to do it ourselves: SCL on PC10
(I2C0_SCL#14) which unpacks to Port C, pin 10, location 14; and SDA on PC11 (I2C0_SDA#16), or Port C, pin
11, location 16. Setup finishes by calling verify_sensor() to check that we can talk to it.

Using the I2C bus means including the header file i2cspm.h in our application, so we must

1. Add ${SDK}/hardware/kit/common/drivers to the C/C++ Include list.

2. Link ${SDK}/platform/emlib/src/em_i2c.c to hw/.

3. Link ${SDK}/hardware/kit/common/drivers/i2cspm.c to hw/.

4. Create a file src/i2cspmconfig.h which has one define, I2CSPM_TRANSFER_TIMEOUT 3000000.

The last file is needed because the devkit board SLWSTK6050A doesn't have an entry under ${SDK}/hardware/
kit.

We enable the sensor with GPIO pin PD15, but this also enables the LCD. That spec requires a periodic pulse on
PD13 to avoid damaging the display. We'll use the software timer to meet the datasheet requirements of > 1 Hz,
50% duty cycle pulse, toggling PD13 on and off for 250 ms each. The LCD spec also says to keep DISP_SCS
on pin PD14 low during EXTCOMIN, so we clear the pin. In the application we add two functions, setup_lcd()
which initializes the pins and starts the timer with callback toggle_extcomin().

We can now properly implement sensor reads in our button press event handler. The timer placeholders in
simulate_ht() get replaced by LED toggles and sensor reads, with the results printed to the UART console. Data
logging is done by setting the global number of samples and letting the LCD timer do a sensor read once per

../html/zwave_htsensor_code.html#step2Bhandleevent
../html/zwave_htsensor_code.html#Step2Bsetuplcd
../html/zwave_htsensor_code.html#Step2Bsetupi2c
../html/zwave_htsensor_code.html#Step2Bverifysensor
../html/zwave_htsensor_code.html#Step2BreadHT

sampling interval for TSAMPLE seconds. The values are cached in global arrays in anticipation of the next step,
and are also sent to the UART console.

Console trace of the start of a logging run.

This version of our application contains these functions:

function role description

handle_event button press read sensor or start logging

handle_dummy placeholder empty ZWave command handler

setup_i2c sensor read prepare I2C bus

i2c_strerror sensor read string version of I2C status code

verify_sensor sensor read confirm HT sensor present

read_HT sensor read read humidity and/or temperature

setup_lcd LCD driver prepare refresh timer

toggle_extcomin LCD driver, logger refresh device, log sensor readings

ApplicationInit ZAF pre-task system setup

ApplicationTask ZAF post-task setup and event loop

Transport_ApplicationCommandHandlerEx ZAF empty ZWave command handler

The project's file list has added two files under hw/ and one under src/.

hw/ src/ ZAF_AppUtil/ ZAF_CC/
config_app.h ZAF_TSE.c
HTSensor1.c ZW_TransportEndpoint.c
i2cspmconfig.h

linked within Simplicity Studio
em_i2c.c application_properties.c
em_letimer.c AppTimer.c
gpiointerrupt.c board_indicator.c
i2cspm.c board.c
startup_zgm13.S ZAF_command_class_utils.c
system_zgm13.c zaf_event_helper.c

ZAF_uart_utils.c
ZW_TransportMulticast.c
ZW_TransportSecProtocol.c

Our last hardware change is to use the LCD to display the humidity and temperature, rather than having to rely
on the debug console.

Step 2c: Hardware - LCD

The code for this step is found here.

In addition to eventually sending sensor readings back to the host, we want to use the LCD to show the current
values. We'll divide the display into three parts. The top row will show the sensor readings as text. The bottom
row will have graph logged values over time. The left graph will contain humidity values, the right temperature.

The DevKit LCD after a log, showing the current readings (top) and graphs of the humidity (below
left) and temperature (below right). The sensor is the white square at the top right of the board.

The ZWave SDK provides most, but not all, the files we need to operate the device. There are two headers, one
with the display configuration and one with error codes, that are found only in the Gecko SDK. We can use the
standard low-level display drivers for the hardware, but will need to modify the text display code to use a font
with new characters and will need to write code to display graphs.

../data/HTSensor_Step2C.tar.bz2
../html/zwave_htsensor_step2C.html

To start with the text display,

1. Copy ${SDK}/hardware/kit/drivers/displayfont16x20.h to hw/displayfont16x20HT.h and add/change the
four characters we need.

2. Copy ${SDK}/hardware/kit/common/drivers/textdisplay.c to hw/, add references to the new font, and
edit TEXTDISPLAY_New() and TextdisplayUpdate() to allow for fewer text lines to make room for the
graph.

3. Copy ${SDK}/hardware/kit/common/drivers/textdisplay.h to hw/ and add a member maxlines to the
TEXTDISPLAY_Config_t structure.

4. Copy gecko_sdk_suite/v2.4/util/silicon_labs/silabs_core/graphics/displayconfigapp.h to hw/ and add
defines for the new font and to allow VT100 escape codes.

5. Copy gecko_sdk_suite/v2.4/platform/middleware/glib/em_types.h into hw/.

We need to add four symbols to the font: '-', '.', '%', and degree-C. They need to be in a continuous ASCII series
with the other characters, so we put the first three at the start with % replacing the slash (we will have to print a
'/' to get the percent, in other words). The degrees sign replaces the semicolon as the next-to-last character,
before the space. The characters are bit encoded and were hand-crafted in a spreadsheet and had to be flipped
left-right for display. The top of source file #2 defines FONT_ASCII_START, FONT_CHARACTERS,
FONT_BITS_MASK, FONT_BITS_LOG2, and fontBits to describe the new font. The ZWave SDK doesn't
contain all the code needed to use the LCD for this devkit, which we find in the Gecko SDK. To
displayconfigapp.h add defines for INCLUDE_TEXTDISPLAY_SUPPORT,
TEXTDISPLAY_NUMBER_FONT_16x20HT, and
INCLUDE_VIDEO_TERMINAL_ESCAPE_SEQUENCE_SUPPORT, and remove or comment out the real
time clock section at the bottom.

To compile we must

1. Link ${SDK}/hardware/kit/common/drivers/display.c under hw/.

2. Link ${SDK}/hardware/kit/common/drivers/displayls013b7dh03.c under hw/.

3. Link ${SDK}/hardware/kit/common/drivers/displaypalemlib.c under hw/.

4. Add ${SDK}/hardware/kit/common/bsp to the C/C++ Include list.

5. Link ${SDK}/platform/emlib/src/em_prs.c under hw/.

We are now ready to display the sensor values in display_humidity() or display_temperature(). We use VT100
escape codes to get to the right line and print values digit by digit, dropping leading zeroes, adding a decimal
point when appropriate, and finishing with a space and the units. There are separate routines for humidity and
temperature since the initial positions are different and we must handle negative temperatures. Escape codes are
written to screen with TEXTDISPLAY_WriteString(), characters with TEXTDISPLAY_WriteChar(). You'll find
the escape codes defined in textdisplay.h. Note that we send '/' or ';' for the units, per our font substitution.

The driver function DISPLAY_Init() replaces the GPIO pin setup we had to do in Step 2b, and we no longer
need to use the software timer to drive the EXTCOMIN pin. We create the appconfig structure to store the
display configuration in a global variable which is passed to each TEXTDISPLAY_* function, and replace the
setup_lcd() function in Step 2b with setup_display(). This must be called before setup_i2c() because it enables
GPIO pin 15, the display and the sensor.

../html/zwave_htsensor_code.html#Step2Csetupdisplay
../html/zwave_htsensor_code.html#Step2Cappconfig
../html/zwave_htsensor_code.html#Step2Cdisplayhumidity
../html/zwave_htsensor_code.html#Step2Cdisplayconfigapp
../html/zwave_htsensor_code.html#Step2Ctextdisplay

In our event handler we display the sensor reading after printing it to the UART console.

Our graphics driver will be modeled on textdisplay.c. The public interface will include
GRAPHDISPLAY_New() to set up the geometry of the area and draw boxes around the graphs,
GRAPHDISPLAY_Delete() to release any resources we've reserved, GRAPHDISPLAY_Clear() to turn off all
the pixels inside the frame (remembering that the display is inverted, or black-on-white, so 'off' really means
'white' and is a set bit), GRAPHDISPLAY_GetWidth() to get the size of the drawing area, and
GRAPHDISPLAY_SetPoint() to turn a pixel on or off. For batch changes, the drawing functions have a redraw
argument that if false sets pixels in the backing store without sending the whole store to the display. Only for the
last point should redraw be set true. Pixels are bit-packed into the store. The workhorse function underneath
this code is pPixelMatrixDraw(), part of the displayls013b7dh03.c code. The driver is in graphdisplay.c, the
header is graphdisplay.h, and both are in the hw/ directory.

Clearing the text, which sets the update mode to TEXTDISPLAY_UPDATE_MODE_FULL, erases the entire
display, so we need to modify the text display so it thinks there are fewer lines on the LCD than there really are.
We add a member maxlines to the display configuration structure to provide the limit (0 will still use the entire
screen), setting it before calling TEXTDISPLAY_New(). The driver will work without changes with the
overridden line count, except for one edit to TextdisplayUpdate to keep the default behavior of clearing the
bottom of the screen automatically when we haven't set maxlines.

We need to re-organize the sensor log before we can graph the data. We gather the history of the measurements
in the htsamples structure, also using it to track the range of values, position in the graph, and the sampling time
and count. We don't want to use a fixed range for graphing so we can adapt to the readings, be they fairly stable
over a short run or with large swings over a longer. We add two functions: clear_log() to initialize everything,
and start_sampling() to prepare the log and graphs and start the timer. We change the timer callback to store the
readings in the structure, updating the range in the processs, and displaying/graphing the point. Remember this
callback no longer contains the LCD EXTCOMIN toggle. We use separate functions to graph each value (with
some work we could abstract the log so we would need only one function, because the two are mostly the same).
If the vertical scale changes we must clear the graph and redraw all points, otherwise we can just plot the new
point. The logic is straightforward within each function.

Our application now contains these new or modified functions. The I2C and ZAF functions setup_i2c(),
i2c_strerror(), verify_sensor(), read_HT(), handle_dummy(), ApplicationInit(), ApplicationTask(), and
Transport_ApplicationCommandHandlerEx() are unchanged.

../html/zwave_htsensor_code.html#Step2Chtsamples

function role description

handle_event button press read sensor or start logging

start_sampling logger clear log/graph, start timer

sample_ht logger store and display/graph sensor values

clear_log logger prepare data store for logging

setup_display LCD driver initialize text, graph displays

display_humidity LCD driver show humidity in text display

display_temperature LCD driver show temperature in text display

clear_graphs LCD driver erase data from graph display

graph_humidity LCD driver draw humidity log in graph

graph_temperature LCD driver draw temperature log in graph

draw_2x2point LCD driver draw 2x2 point in a graph

We've had to add many files to the hardware directory.

hw/ src/ ZAF_AppUtil/ ZAF_CC/
displayconfigapp.h config_app.h ZAF_TSE.c
displayfont16x20HT.h HTSensor1.c ZW_TransportEndpoint.c
em_types.h i2cspmconfig.h
graphdisplay.c
graphdisplay.h
textdisplay.c
testdisplayconfig.h
textdisplay.h

linked within Simplicity Studio
display.c application_properties.c
displayls013b7dh03.c AppTimer.c
displaypalemlib.c board_indicator.c
em_i2c.c board.c
em_letimer.c ZAF_command_class_utils.c
em_prs.c zaf_event_helper.c
gpiointerrupts.c ZAF_uart_utils.c
i2cspm.c ZW_TransportMulticast.c
startup_zgm13.S ZW_TransportSecProtocol.c
system_zgm13.c

The picture at the start of this section shows the display after a logging session. We've implemented all the
hardware functions we wanted, so it's time to turn to ZWave.

Step 3a: ZWave - Inclusion and Exclusion

../html/zwave_htsensor_step3A.html

The code for this step is found here.

The hardware is working, it's time to add ZWave support. Our primary goal is to implement
CC_SENSOR_MULTILEVEL for both the humidity and temperature channels. We'll implement Version 11 of
the command class, with GET/REPORT and SUPPORTED_GET/REPORT for sensors and scales. We'll use
CC_CONFIGURATION to control the logger, supporting three parameters: #1, a 4 byte integer with the time
between samples in seconds (the size chosen to allow 86400, or once per day); #2, a 1 byte integer with the
number of samples (0 to run without stopping); and #3, a 1 byte start/stop (non-zero/zero) flag. We'll store at
most 64 samples, based on the width of the LCD graphs, so we can statically allocate arrays and the back stores
for the graphs. Logging will not persist over a power loss, so we don't need to worry about storing state in
NVM, and we'll ignore configuration changes while the logger is running.

We are not trying to build a device that will pass certification. We will be ignoring many required command
classes, including ZWave+, Indicator, Association, Basic, Device Reset, Firmware Update, and Supervision. We
will not implement Smart Start, nor S2 Security. For reference, ZWave+ requires us to use
GENERIC_TYPE_SENSOR_MULTILEVEL and SPECIFIC_TYPE_ROUTING_MULTILEVEL_SENSOR,
and Sensor Multilevel instead of Basic. It also requires Association, Association Group Info, Device Reset,
Firmware Update Meta-Data, Indicator, Manufacturer Specific, Multi-Channel Association, Power Level, S2,
Supervision, Transport Service, Version, and Zwave Plus Info; Multi-Command would be recommended. Many
of these are easily supported using the full framework, which we'll discuss in Step 4.

As a first step, implementing inclusion and exclusion is enough work, as it will force us to deal with the
application framework parts we simplified back in Step 2a. You'll remember we removed association groups
from the ZAF_TSE.c source file and multichannels from ZW_TransportEndpoint.c. We linked in many files to
use them unchanged, including application_properties.c, AppTimer.c, board_indicator.c, board.c,
ZAF_command_class_utils.c, zaf_event_helper.c, ZAF_uart_utils.c, ZW_TransportMulticast.c, and
ZW_TransportSecProtocol.c. All these should be under the ZAF_AppUtil/ directory.

We start by cleaning up the configuration files for the framework. Include ZW_product_id_enum.h in
src/config_app.h and remove the _PRODUCT_TYPE_ID_ENUM_ type. Move MAX_TXPWR and
MEASURED_0DBM_TXPWR into src/config_rf.h, include ZW_radio_api.h, and define RADIO_REGION as
REGION_US, also replacing the use of REGION_US in the application code. In ApplicationInit() we need to
start the radio by calling BRD420xBoardInit(). Call this, and setup_display(), after starting the UART, as it
includes debug prints that we don't want to lose. (The initialization function from Step 3b shows these changes,
as well as edits for the NIF.)

When we created our event handlers in Step 2a, we left two placeholders that we now have to implement. The
ZwCommandStatusQueue will handle events from the framework to the application, and ZWRxQueue will
handle incoming frames. There is also a pZwTxQueue for outbound frames and pZWCommandQueue for
commands to the framework, neither of which we'll use. Events in the command status queue have payloads of
type SZwaveCommandStatusPackage; they are processed in handle_cmdstatus(). Its first byte/member, called
eStatusType, is a enumeration EZwaveCommandStatusType. The second member, called Content, is a type-
specific structure of varying length. For example and assuming the payload variable is called 'status', during
inclusion we'll get a EZWAVECOMMANDSTATUS_LEARN_MODE_STATUS packet for status.eStatusType
with the detailed state in status.Content.LearnModeStatus.Status. Frame events, processed in handle_frame(),
also have two members in their structures, the first called eReceiveType and the second with type-specific details

../html/zwave_htsensor_code.html#Step3Ahandleframe
../html/zwave_htsensor_code.html#Step3Ahandlecmdstatus
../html/zwave_htsensor_code.html#Step3BApplicationInit
../html/zwave_htsensor_step2A.html
../data/HTSensor_Step3A.tar.bz2

called uReceiveParams. All of these are defined in ${SDK}/ZWave/API/ZW_application_transport_interface.h.
The event handlers will switch on the first member, either eStatusType or eReceiveType, and then process the
details in the second. For this step, we do not need to do anything with frame events, and only must consider
EZWAVECOMMANDSTATUS_LEARN_MODE_STATUS and
EZWAVECOMMANDSTATUS_NETWORK_LEARN_MODE_START.

The demo programs define five states for the application. STARTUP means they are setting up non-volatile
memory. During INIT they read what's stored in NVM, set up association groups, start the event scheduler, and
begin Smart Start scanning. While IDLE they handle button presses, either entering learn mode or sending the
NIF, or sending a message to the lifeline. They mark LEARN_MODE with LEDs and allow canceling the
operation. RESET does just that, for the board and NVM.

We will simplify this. Our application state will contain a flag indicating if we're in learn mode or not. Progress
will translate into an enumeration LEARN_[EXCLUDED|INCLUDED|UNDERWAY|FAILED] summary which
we will pass to a set_indicator() function to control LED1, which we set aside back in Step 2a for this purpose.
The LED will turn on if included, blink slowly while underway, and blink quickly for a while after a failure.
Both the flag and LED are set in handle_cmdstatus().

While learning our button press event handler will ignore Button1 events. Otherwise it will call
ZAF_setNetworkLearnMode() depending on the current inclusion state (available as app->pNetworkInfo-
>eInclusionState where app is cached and retrieved from ZAF_getAppHandle(). See handle_event().

These modifications require surprisingly few changes to files linked to the project; just getting a project to
compile within the framework, without using it, has pulled in most of the dependencies. There are no changes to
the project's (build) properties.

1. Link ${SDK}/ZAF/ApplicationUtilities/board_BRD420x.c under ZAF_AppUtil/.

2. Link ${SDK}/ZAF/ApplicationUtilities/ZAF_network_learn.c under ZAF_AppUtil/.

Only a handful of functions change for this functionality. Any not listed here are the same as in Step 2c.

function status role description

handle_event edit button press implement button 1

handle_dummy remove

set_indicator new LED1 show learn status on LED

ApplicationInit edit ZAF use config_rf.h, init radio

ApplicationTask edit ZAF extra handlers

handle_frame new ZAF frame event handler

handle_cmdstatus new ZAF command status event handler

The directory listing has just three new entries, the RF configuration file and the two ZAF source links.

../html/zwave_htsensor_code.html#Step3Ahandleevent
../html/zwave_htsensor_code.html#Step3Asetindicator

hw/ src/ ZAF_AppUtil/ ZAF_CC/
displayconfigapp.h config_app.h ZAF_TSE.c
displayfont16x20HT.h config_rf.h ZW_TransportEndpoint.c
em_types.h HTSensor1.c
graphdisplay.c i2cspmconfig.h
graphdisplay.h
textdisplay.c
testdisplayconfig.h
textdisplay.h

linked within Simplicity Studio
display.c application_properties.c
displayls013b7dh03.c AppTimer.c
displaypalemlib.c board_BRD420x.c
em_i2c.c board_indicator.c
em_letimer.c board.c
em_prs.c ZAF_command_class_utils.c
gpiointerrupts.c zaf_event_helper.c
i2cspm.c ZAF_network_learn.c
startup_zgm13.S ZAF_uart_utils.c
system_zgm13.c ZW_TransportMulticast.c

ZW_TransportSecProtocol.c

With this we have the basic functionality we wanted. If you press Button1 without having a controller waiting
for the node, you will eventually see a failure indicator. If there is a controller waiting, you'll see a success
indicator and console message. The controller will see the some correct values in the NIF, including the right
device classes, and some incorrect, like the command class list. We'll fix that next. Sending commands from the
controller to the devkit will do nothing, but you will see console messages for the framework events it generates.

zipgateway information after inclusion. Command
classes 0x68 (ZIP Naming) and 0x23 (ZIP) are

added by the gateway. Device classes are correct.

../html/zwave_htsensor_step3B.html

zpiffer trace of inclusion. AppUpdate in left (blue) window includes no command classes. Other NIF
components in right (red) window.

Step 3b: ZWave - NIF and CC_VERSION

The code for this step is found here.

Our application in Step 3a sends a NIF with a bogus command class list. We want to fix that, and, since we
haven't created any commands, will add one, CC_VERSION. This means we need to finish setting up the
framework, figuring out how frames are routed through the event handlers to interact with the command class
code. We then build the correct command class list and provide it to ZAF.

Incoming frames arrive in two places. The framework leaves a stub that the transport layer calls,
Transport_ApplicationCommandHandlerEx(), for command classes that it has already unpacked. The frame
handler stores the frame as the payload to a SZwaveReceivePackage structure, but does not unpack it. There are
separate ways of processing the data.

An unpacked command is put in a ZW_APPLICATION_TX_BUFFER structure, whose first two members are
the command class and command bytes. The third member is a structure particular to the command, and the
type of this member is a union of all possibilities. ${SDK}/ZWave/API/ZW_classcmd.h defines these.
ZW_VERSION_REPORT_2BYTE_V2_FRAME, for example, has eleven more bytes with the library type,
protocol version, firmware version, hardware version, and up to two additional firmware targets.

Transport_ApplicationCommandHandlerEx() is passed this structure, along with the receive options flags and
frame size. It switches on the command class byte and calls the command class directly. The ZAF command
classes call this a handler.

../html/zwave_htsensor_code.html#Step3BTransportAppCmdHandlerEx
../data/HTSensor_Step3B.tar.bz2

The incoming frame handler pulls the frame off the ZwRxQueue, of type SZwaveReceivePackage, defined in $
{SDK}/ZWave/API/ZW_application_transport_interface.h. The data is identified with an EZwaveReceiveType
enumeration, with values for SINGLE, MULTI, NODE_UPDATE, and SECURITY_EVENT. The second
member, uReceiveParams, is a union of structures, one per type. For SINGLE the structure includes the
payload, its length, and the receive options flags; MULTI also adds a node mask. NODE_UPDATE is for
controllers, and SECURITY_EVENT for a specific S2 need. The payload has not been unpacked, so ZAF
includes another notification system called the CommandPublisher to do that. The publisher knows about
command classes by some trickery during the build: the command class source file uses the REGISTER_CC()
macro to create a global variable that's added to an array in a named section of memory (called the
HANDLER_SECTION) during compilation. The publisher can loop through the array to find the command
class and call the corresponding receive handler after unpacking the frame; it can also pick a handler from the
command byte.

The application's handle_frame() pulls a frame off the queue and switches on the received type, where we need
only support SINGLE. It hands off the payload to the CommandPublisher which does the unpacking and calls
the appropriate function in the appropriate command class. The application source code contains a comment
showing how you can start to pick apart the payload if you wish.

ZAF needs to know which command classes the application actually supports, which may differ from those
available through the publisher. It expects up to three byte arrays with the CC lists, one for unsecured
commands, a second for those that can be accessed unsecured even if the node is included securely, and a third
for secured. These arrays and their length go in a global variable of type app_node_information_t, along with
the device options mask we've put in src/config_app.h (set to APPLICATION_NODEINFO_LISTENING) and
the node's generic and specific type, also defined in src/config_app.h. For this step we're just going to support
Version unsecured, and will pass empty pointers for the other two options; we'll see how to include secure
commands in Step 3e. This NIF is passed to Transport_OnApplicationInitSW() at the start of the application
task.

Confusingly, the framework actually contains two versions of the NIF, in two different structures. In addition to
app_node_information_t, there is also a SAppNodeInfo_t, which is stored in a second global variable appnif2
and passed to ZW_ApplicationRegisterTask() in the initialization function. The two structures contain the same
information, just with different names and in a different order (arrays and lengths are swapped). We add a
function copy_nif() to transform between the two.

To put all this simply, adding a command class requires:

• implementing the command, creating a handler for the incoming packet

• registering the handler with the command publisher

• calling the publisher in the frame event handler

• providing an application command handler for the transport layer that, based on the command class, will
call the command class handler directly

• adding the command class byte to the unsecured/available unsecured/secured list in the NIF

• copying the NIF to the second format and storing that with the ZWave configuration, provided when
starting the application's FreeRTOS task

• registering the NIF with the transport layer

../html/zwave_htsensor_code.html#Step3BApplicationInit
../html/zwave_htsensor_code.html#Step3BNIFCC
../html/zwave_htsensor_code.html#Step3Bhandleframe

OK, maybe that's not so simple. It's certainly repetitive. If you compare the changes to the application source
code between Step 3a and Step 3b, you'll see this is all that's happened (plus one addition for Version, described
below). It requires several changes to the project's Properties and files:

1. Removing ${SDK}/ZAF/CommandClasses/Common from the C/C++ Include list.

2. Linking on the file system ${SDK}/ZAF/CommandClasses/Common/CC_Common.h under ZAF_CC/.

3. Linking on the file system ${SDK}/ZAF/CommandClasses/Version/CC_Version.h under ZAF_CC/.

4. Linking on the file system ${SDK}/ZAF/CommandClasses/Supervision/CC_Supervision.h under
ZAF_CC/.

5. Linking on the file system ${SDK}/ZAF/CommandClasses/MultiChan/multichannel.h under ZAF_CC/.

6. Linking ${SDK}/ZAF/ApplicationUtilities/ZAF_tx_mutex.c under ZAF_AppUtil/.

7. Linking ${SDK}/ZAF/CommandClasses/Supervision/CC_Supervision.c under ZAF_CC/.

8. Removing our edited ZAF_AppUtil/ZW_TransportEndpoint.c.

9. Linking ${SDK}/ZAF/ApplicationUtilities/ZW_TransportEndpoint.c under ZAF_AppUtil/.

10. Adding '#define NUMBER_OF_ENDPOINTS 0' to src/config_app.h.

It is important in steps #2-5 that the links be created on disk and not within Simplicity Studio, otherwise the
header files will not physically exist and the build will fail. This is not true for source files as in #6 and #7,
which correctly translate into SDK references when the makefile is built. This project layout is a preference for
us, to keep things in a concise file hierarchy and to shorten the include path and compiler command line. There
are two alternatives Silicon Labs prefers, based on the demo programs. You could instead add each command
class directory to the C/C++ Include list, or you could use project modules within Simplicity Studio. On the
project Properties, the build section contains an entry called Project Modules, and here you can check which
commands you want to use. Simplicity Studio will then make a local copy on disk from the SDK, one directory
per command class.

Bringing up the Version command requires a few more changes. The command itself is built into the framework
and we don't need to start from scratch. That implementation leaves three functions as stubs, which we must
supply in our ZAF/CC_Version.c: CC_Version_getNumberOfFirmwareTargets(),
CC_Version_GetFirmwareVersion_handler(), and CC_Version_GetHardwareVersion_handler(). We fill in
dummy values for each of these. The source code requires the corresponding header which was linked in #3
above. Finally, during the application's initialization we need to call CC_Version_SetApplicationVersionInfo()
with the values we've defined in src/config_app.h.

At this time we've undone the simplifications back in Step 2a to get the framework set up, except for the edits to
ZAF_TSE.c to avoid dealing with association groups. The remaining source code edits deal with setting up the
NIF and command routing and implementing the missing pieces to the CC_Version functionality that's built in to
the framework.

../html/zwave_htsensor_code.html#Step3BCCVersion

object status role description

appnif1 (global var) new transport NIF for transport layer

ApplicationInit edit ZAF set NIFs, version information

ApplicationTask edit ZAF register transport layer NIF

Transport_AppCmdHandlerEx new transport transport layer command router

handle_frame edit ZAF pass frame to command publisher

copy_nif new ZAF copy transport NIF to protocol NIF

ZAF_CC/Version.c new command add missing functions

In the file listing we've made ZW_TransportEndpoint.c a Simplicity Studio link and populated the command
class directory.

hw/ src/ ZAF_AppUtil/ ZAF_CC/
displayconfigapp.h config_app.h ZAF_TSE.c CC_Version.c
displayfont16x20HT.h config_rf.h
em_types.h HTSensor1.c
graphdisplay.c i2cspmconfig.h
graphdisplay.h
textdisplay.c
testdisplayconfig.h
textdisplay.h

linked within Simplicity Studio
display.c application_properties.c CC_Supervision.c
displayls013b7dh03.c AppTimer.c multichannel.c
displaypalemlib.c board_BRD420x.c
em_i2c.c board_indicator.c
em_letimer.c board.c
em_prs.c ZAF_command_class_utils.c
gpiointerrupts.c zaf_event_helper.c
i2cspm.c ZAF_network_learn.c
startup_zgm13.S ZAF_uart_utils.c
system_zgm13.c ZW_TransportEndpoint.c

ZW_TransportMulticast.c
ZW_TransportSecProtocol.c

linked on file system
CC_Common.h
CC_Supervision.h
CC_Version.h
multichannel.h

Sending VERSION_GET will return the right information. The command list has 0x86 (Version) and we see the
correction application and library versions. Now we can implement the sensor class.

../html/zwave_htsensor_step3C.html

zipgateway information after inclusion. Command
classes now include 0x86 (Version).

zpiffer trace of inclusion. AppUpdate in left (blue) window shows CC_Version.

zpiffer shows further probing of CC_Version during inclusion, including command class capabilities
(left/blue) and ZWave and app versions (right/red). The SDK and ZW fields match the library version,

the app fields match config_app.h.

Step 3c: ZWave - CC_SENSOR_MULTILEVEL

The code for this step is found here.

Adding ZWave access to the sensor will be pretty simple. We need to put the CC byte in the NIF, route the
packet in the transport layer's application command handler, and implement the command class. Complicating
things will be the need to transmit a reply, and we'll try to make our implementation general, using stubs that the
application must provide for specific information like supported sensor types and scales. A diff of the
application source code to Step 3b will also show many code clean-ups that we won't discuss.

SDS13812 defines sensor types. Air temperature sensors have value (ID) 0x01, with the supported bit mask
being bit 0 of byte 1. We will provide two scales, Fahrenheit (ID 0x01) and Celsius (0x00). Humidity sensors

../data/HTSensor_Step3C.tar.bz2

have value 0x05, with the supported mask being bit 5 of byte 1. There are two possible scales, relative (ID
0x00) and absolute (ID 0x01), and we'll only support the first. Both sensor readings are in milli-percent/degrees,
so the values reported will use 4 bytes with a precision of 3. This means that the combined mask for
SENSOR_MULTILEVEL_SUPPORTED_SENSOR_REPORT is 0x11.
SENSOR_MULTILEVEL_SUPPORTED_SCALE_REPORT will return 0x6C for temp (F) and 0x64 for
humidity and temp (C).

Structures holding the contents of the frames we'll use are defined in ${SDK}/ZWave/API/ZW_classcmd.h. We
will use the latest version of the command class, V11. The frames are
ZW_SENSOR_MULTILEVEL_GET_V11_FRAME,
ZW_SENSOR_MULTILEVEL_REPORT_[1234]BYTE_V11_FRAME,
ZW_SENSOR_MULTILEVEL_SUPPORTED_GET_SENSOR_V11_FRAME,
ZW_SENSOR_MULTILEVEL_SUPPORTED_SENSOR_REPORT_[1234]BYTE_V11_FRAME,
ZW_SENSOR_MULTILEVEL_SUPPORTED_GET_SCALE_V11_FRAME, and
ZW_SENSOR_MULTILEVEL_SUPPORTED_SCALE_REPORT_V11_FRAME. The reports have four
different versions depending on the number of mask bytes that must be sent; we choose the appropriate version
for the value.

Outgoing messages use three structures, TRANSMIT_OPTIONS_TYPE_SINGLE_EX defined in
${SDK}/ZAF/ApplicationUtilities/ZW_TransportEndpoint.h, ZAF_TRANSPORT_TX_BUFFER defined in $
{SDK}/ZAF/ApplicationUtilities/ZAF_tx_mutex.h, and ZAF_APPLICATION_TX_BUFFER defined in
ZW_classcmd.h. The first has the source and destination nodes, security flags, and transmission flags. The
preferred way to fill it in is to use the RxToTxOptions() function to convert a corresponding structure on the
incoming GET. If we send a reading in response to a button press or during logging, then for this demo we force
the destination to be node 1, the controller (in a full product you would send it to the lifeline). The second
structure contains multichannel endpoint information, a SUPERVISION_GET frame, and the actual transmission
stored in the third structure. It is a union of structures of all possible frame contents, like those in the previous
paragraph. We fill in the correct frame with the sensor value or supported bit mask and zero the supervision
structure. Call Transport_SendResponseEP() with the options and transport buffer to send the report.

The transport layer has a second queue for outgoing frames, accessed with Transport_SendRequestEP(). Since
requests must be used for unsolicited messages, we need to use it for values sent from button presses. However,
it seems to have no difference in the packet sent (you'll notice the frame type is REQ in the zpiffer traces) and in
the transport layer code there are only a couple of differences: requests override the source node for multi-
channel frames, and the callbacks after transmission have different signatures, a request getting a transmission
result and a response the transmit status.

To implement the command class, create ZAF_CC/CC_MultiSensor.[ch]. We'll have two functions for our
ZWave functionality, handleCCMultilevelSensor() for incoming frames and sendSensorValue() for outgoing
reports. All other transmissions are REPORTs in response to GETs and are performed in the handler. The source
code contains these two functions, plus an internal helper with the common send code for both report paths. It
also invokes the REGISTER_CC macro to add the handler to the command publisher. The handler is called in
the application by Transport_ApplicationCommandHandlerEx() (the command publisher is already doing the
routing in the frame handler), and values are sent in response to button press events.

The command class will also prototype five functions that must be implemented in the application to supply

../html/zwave_htsensor_code.html#Step3CsendSensorValue
../html/zwave_htsensor_code.html#Step3ChandleCCMultilevelSensor

device-specific information. This architecture is similar to that used by the binary switch and user code
commands already included in ZAF. appSensorValidType() validates the sensor type passed in a GET.
appSensorMask() generates the bit mask for the supported sensor types, and appSensorScaleMask() the scale
specification for a sensor type. appSensorLevel() returns the precision/scale/size byte for a sensor reading.
appSensorValue() returns the humidity or temperature after reading it from the sensor. It does the Fahrenheit
conversion locally.

The differences in the application code to Step 3b, ignoring edits for code cleanup, are

object status role description

appnif1 (global var) edit transport add command class

sample_ht edit logger send reading over ZWave

send_temperature|humidity new ZWave send reading over ZWave

Transport_AppCmdHandlerEx edit transport call command class handler

handle_cmdstatus edit ZAF callback after successful Tx

am_included new ZWave test if node included in a network

appSensorValidType new CC support validate requested sensor

appSensorMask new CC support get mask for supported sensors

appSensorScaleMask new CC support get mask for supported scales

appSensorValue new CC support read sensor

appSensorLevel new CC support get size of sensor value

An edit to handle_cmdstatus() is needed to avoid filling up a limited queue of callbacks after frames are
transmitted. Comments in ZW_TransportEndpoint.c indicate the queue is supposed to be a ring, but it doesn't
look like it cycles correctly and the head eventually collides with the tail. Executing the callback on a
EZWAVECOMMANDSTATUS_TX event solves the problem.

The project files now include the source for the new command class.

../html/zwave_htsensor_code.html#Step3Chandlecmdstatus
../html/zwave_htsensor_code.html#Step3CappSensorValue
../html/zwave_htsensor_code.html#Step3CappSensorLevel
../html/zwave_htsensor_code.html#Step3CappSensorScaleMask
../html/zwave_htsensor_code.html#Step3CappSensorMask
../html/zwave_htsensor_code.html#Step3CappSensorValidType

hw/ src/ ZAF_AppUtil/ ZAF_CC/
displayconfigapp.h config_app.h ZAF_TSE.c CC_MultiSensor.c
displayfont16x20HT.h config_rf.h CC_MultiSensor.h
em_types.h HTSensor1.c CC_Version.c
graphdisplay.c i2cspmconfig.h
graphdisplay.h
textdisplay.c
testdisplayconfig.h
textdisplay.h

linked within Simplicity Studio
display.c application_properties.c CC_Supervision.c
displayls013b7dh03.c AppTimer.c multichannel.c
displaypalemlib.c board_BRD420x.c
em_i2c.c board_indicator.c
em_letimer.c board.c
em_prs.c ZAF_command_class_utils.c
gpiointerrupts.c zaf_event_helper.c
i2cspm.c ZAF_network_learn.c
startup_zgm13.S ZAF_uart_utils.c
system_zgm13.c ZW_TransportEndpoint.c

ZW_TransportMulticast.c
ZW_TransportSecProtocol.c

linked on file system
CC_Common.h
CC_Supervision.h
CC_Version.h
multichannel.h

Testing, you'll find the application now responds to all CC_SENSOR_MULTILEVEL commands. Buttons 3 and
4 will send single sensor readings, and button 2 will start logging with periodic updates sent to the controller.
The setup of the log is still hard-coded, and we need to change that next with the Configuration class.

zpiffer trace of GET (left/blue) and REPORT (right/red) for humidity reading. Value is in milli-percent.

../html/zwave_htsensor_step3D.html

zpiffer trace of GET (left/blue) and REPORT (right/red) for temperature reading. Value is in millidegrees.

Humidity (left) and temperature (right) readings after button presses.

Step 3d: ZWave - CC_CONFIGURATION

The code for this step is found here.

Our data logger has run with a fixed number of samples at a fixed time interval. We want to be able to configure
these by ZWave, and also to start the log remotely. We will use the CC_CONFIGURATION commands, version
1, to do this. Parameter 1 will be time in seconds between samples, Parameter 2 the number of samples, and
Parameter 3 a start/stop flag.

As with the sensor command, we create new files ZAF_CC/CC_Configuration.[ch] with the header and source.
There is one framework function for incoming frames, handleCCConfiguration(), which operates much like the
multilevel sensor handler. It uses four functions left as prototypes for the application code to implement.

../data/HTSensor_Step3D.tar.bz2

appConfigValidParam() tests if the requested parameter ID is supported, appConfigValue() returns a parameter's
value, appConfigLevel() returns the size byte for the REPORT, and appConfigSet() changes a parameter, perhaps
resetting it to its default value. Note that the command class defines default behavior if a bad parameter
identifier or value is received, and this must be handled in the application code. The command class handler is a
switch for GET, SET, and REPORT (which is ignored). The GET builds and sends a REPORT, the SET changes
the logging setup and may start or stop the logger. Like the multi-byte values we had to assemble for sensor
readings, with different frame structures for different sizes, here we need to unpack a SET value depending on
the size indicated in the command, or fill in the REPORT with the correct number of value bytes.

We have a few changes in the application code besides implementing the four functions for the command class
and adding the command class. The most important is wrapping the log in a mutex, since the timer/logging and
incoming parameter changes can happen asynchronously. FreeRTOS semaphores provide the functionality and
we add some limited error checking if a lock or unlock fails. You can see this in the appConfigSet() code snippet
above. We modify the graphing functions to calculate point coordinates locally so we only have to take the lock
once if we end up re-scaling the y axis. We also add a running flag to the log for when we need to check the
status, because there's no way to read back the LED2 state, which would otherwise signal if logging is underway.

Besides the two command class files and ignoring edits within functions just to add the mutex lock, our
application changes are

object status role description

htlog_mutex, _lock (globals) new logger protect asynch access to log

appnif1 (global var) edit transport add command class

bound_nsample new CC support validation of nsample parameter

graph_humidity edit LCD driver store points locally before drawing

graph_temperature edit LCD driver store points locally before drawing

appConfigValidParam new CC support validate parameter identifier

appConfigValue new CC support get current parameter value

appConfigLevel new CC support get size of parameter value

appConfigSet new CC support change parameter value

ApplicationInit edit ZAF create mutex lock for log

Transport_AppCmdHandlerEx edit ZAF add command class

The project file list includes the new command class.

../html/zwave_htsensor_code.html#Step3DappConfigSet
../html/zwave_htsensor_code.html#Step3DappConfigLevel
../html/zwave_htsensor_code.html#Step3DappConfigValue
../html/zwave_htsensor_code.html#Step3DappConfigValidParam

hw/ src/ ZAF_AppUtil/ ZAF_CC/
displayconfigapp.h config_app.h ZAF_TSE.c CC_Configuration.c
displayfont16x20HT.h config_rf.h CC_Configuration.h
em_types.h HTSensor1.c CC_MultiSensor.c
graphdisplay.c i2cspmconfig.h CC_MultiSensor.h
graphdisplay.h CC_Version.c
textdisplay.c
testdisplayconfig.h
textdisplay.h

linked within Simplicity Studio
display.c application_properties.c CC_Supervision.c
displayls013b7dh03.c AppTimer.c multichannel.c
displaypalemlib.c board_BRD420x.c
em_i2c.c board_indicator.c
em_letimer.c board.c
em_prs.c ZAF_command_class_utils.c
gpiointerrupts.c zaf_event_helper.c
i2cspm.c ZAF_network_learn.c
startup_zgm13.S ZAF_uart_utils.c
system_zgm13.c ZW_TransportEndpoint.c

ZW_TransportMulticast.c
ZW_TransportSecProtocol.c

linked on file system
CC_Common.h
CC_Supervision.h
CC_Version.h
multichannel.h

Our last edits will be to add S0 encryption to the new command classes.

Step 3e: ZWave - Security

The code for this step is found here.

One final change to our demo. Let's make the sensor and configuration classes secure. We'll use S0 so the
zpiffer/zniffer can decrypt the packets, although setting up S2 would be simple.

The first edit is to src/config_app.h. Define REQUESTED_SECURITY_KEYS as SECURITY_KEY_S0_BIT.
For S2 you would also OR in SECURITY_KEY_S2_UNAUTHENTICATED_BIT and
SECURITY_KEY_S2_AUTHENTICATED_BIT.

The second edit is to our application. We don't need to change any functions, just create two arrays with the
secured command class lists and add them to the NIF. The global arrays are named cc_open_secure and
cc_secure. Move the COMMAND_CLASS_MULTISENSOR_ and COMMAND_CLASS_CONFIGURATION

../html/zwave_htsensor_step3E.html
../html/zwave_htsensor_code.html#Step3ENIFCC
../data/HTSensor_Step3E.tar.bz2

byte from cc_unsecure to cc_secure, and put COMMAND_CLASS_SECURITY in all three. Replace the
NULL, 0 entries in appnif1 with the arrays and their length.

The third edit is to the sensor command class. Security when sending packets is controlled by flags in the
transmit options. Our implementation in Step 3c has two triggers for sending a value: an incoming GET, or a
button press. For the first the receive options will contain the security flags and the translation in the
framework's RxToTxOptions() function will preserve them, so the reply will be encrypted if needed. For the
second we faked receive options. Now, sendSensorValue() will check if we have an S0 key and set the
appropriate flag, before translating to transmit options and sending.

In the project

1. Link ${SDK}/ZAF/CommandClasses/Security/CC_Security.c under ZAF_CC/.

2. Link on the file system ${SDK}/ZAF/CommandClasses/Security/CC_Security.h under ZAF_CC/.

Our changes are

object status role description

appnif1 (global var) edit transport mark secure command classes

REQUEST_SECURITY_KEYS
(config_app.h)

edit security enable S0

sendSensorValue
(CC_MultiSensor.c)

edit security button press sends values securely

The final project file listing is

../html/zwave_htsensor_code.html#step3EsendSensorValue

hw/ src/ ZAF_AppUtil/ ZAF_CC/
displayconfigapp.h config_app.h ZAF_TSE.c CC_Configuration.c
displayfont16x20HT.h config_rf.h CC_Configuration.h
em_types.h HTSensor1.c CC_MultiSensor.c
graphdisplay.c i2cspmconfig.h CC_MultiSensor.h
graphdisplay.h CC_Version.c
textdisplay.c
testdisplayconfig.h
textdisplay.h

linked within Simplicity Studio
display.c application_properties.c CC_Supervision.c
displayls013b7dh03.c AppTimer.c CC_Security.c
displaypalemlib.c board_BRD420x.c multichannel.c
em_i2c.c board_indicator.c
em_letimer.c board.c
em_prs.c ZAF_command_class_utils.c
gpiointerrupts.c zaf_event_helper.c
i2cspm.c ZAF_network_learn.c
startup_zgm13.S ZAF_uart_utils.c
system_zgm13.c ZW_TransportEndpoint.c

ZW_TransportMulticast.c
ZW_TransportSecProtocol.c

linked on file system
CC_Common.h
CC_Security.h
CC_Supervision.h
CC_Version.h
multichannel.h

With these changes the sensor readings are now sent secured.

zipgateway information after secured inclusion.
Command class list includes both unsecured (0x98

Security, 0x68 ZIP Name, 0x23 ZIP, 0xF1
S0_Mark) and secured (0x31 MultilevelSensor,

0x70 Configuration, 0x98 Security).

zpiffer trace of inclusion. AppUpdate in left (blue) window shows only unsecured command classes.
Right (red) window has network key verification from device to host.

Secured GET (left/blue) and REPORT (right/red) sequence for temperature reading. Nonce frame not
shown.

Button press sends secured humidity reading.

We'll wrap up the project with a review of all that's been done and an introduction to the other pieces of the
framework.

Step 4: Application Framework

This brings us to the end of the demo. We've learned how projects are set up in Simplicity Studio, created one
from scratch, and added in the SDK hardware and ZAF files needed to compile a program within the framework.
We needed to link some hardware source files, used some code libraries (components), added libraries for Zwave
and radio testing, defined a few symbols for changing the configuration of the hardware files, and set many
many directories on the include path. The Application Framework runs under FreeRTOS and, at the the
application level at least, uses a single task and four event handlers. Events can come from the hardware (button
presses), state changes within the framework (EZWCOMMANDSTATUS_*), or incoming frames routed by the
packet type (EZWAVERECEIVETYPE_*) or, for ZWave commands embedded in a frame, by the command

../html/zwave_htsensor_step4.html

class (ZW_Common member of ZW_APPLICATION_TX_BUFFER). The packet type router uses the
CommandPublisher to unpack a frame and send it to the command handler, if the transport layer hasn't already
done so. New ZWave command classes are added in a file with a function that acts on the specific command
(ZW_Command member of ZW_APPLICATION_TX_BUFFER); it may also have an outgoing path for
application events (for us, button presses) and replies. Security is handled automatically according to the
contents of the node information frame (NIF).

We can define the skeleton of a ZAF project; it will include a minimum amount of configuration information, a
FreeRTOS task, event handlers, and whichever ZWave commands are needed by the product.

1. Define version, device type, manufacturer and product ID, radio parameters, number of endpoints, and
security in config_app.h and config_rf.h.

2. Define the NIF contents in a global variable, holding arrays of command classes grouped by security
level.

3. Implement ApplicationInit(), which does initial set up and registers the task with the application.

A. Provide ApplicationTask() which does board level set up and creates the event queue, then enters the
main loop that distributes events to one of four handlers:

i. AppTimerNotificationHandler(), defined by ZAF.

ii. handle_frame(), which routes incoming frames based on received packet type, and which calls
the CommandPublisher to unpack embedded ZWave commands.

iii. handle_cmdstatus(), which routes framework/ZWave state changes, for example for learning.

iv. handle_event(), which routes hardware events.

4. Implement Transport_ApplicationCommandHandlerEx(), which sends frames that have been unpacked
by the transport layer to the appropriate command class.

5. Implement application-specific functionality for the command classes. This depends on the command
class; see binary switch and user code for example, or for this project, the multilevel sensor and
configuration commands.

The rest of the demo implements functionality triggered off these events or command classes.

The Framework contains more than 60 source and header files, excluding the command classes. We've only
used a small part of what it offers. Unfortunately the only documentation seems to be reading the source. As a
central reference, we've used the following functions:

AppTimer.[ch]
function role called from
AppTimerInit set up ApplicationInit()
AppTimerSetReceiverTask cache FreeRTOS task in timer ApplicationTask()
AppTimerRegister set callback function when timer expires ApplicationTask()
AppTimerNotificationHandler framework handler for timer events ApplicationTask()

board.[ch]
function role called from
BTN_EVENT_* macros to decode button presses HW event handler
Board_Init set up ApplicationInit()
Board_SetLed turn LED on or off internal
Board_IndicatorInit set up LED for learn mode ApplicationTask()
Board_IndicatorControl turn indicator on/off or set flashing internal
Board_EnableButton set up push buttons ApplicationTask()

ZAF_CmdPublisher.[ch]
function role called from
ZAF_CP_CommandPublish route singlecast packet to commands frame handler

ZAF_network_learn.[ch]
function role called from
ZAF_setNetworkLearnMode start/stop learn mode from push button HW event handler

ZAF_uart_utils.[ch]
function role called from
ZAF_UART0_enable start UART for debug logging (DPRINTF) ApplicationInit()
ZAF_UART0_tx_send send debug log over UART ApplicationInit()

ZW_TransportEndpoint.[ch]
function role called from
Transport_SendResponseEP transmit REPORT or other response command class
Transport_Application
CommandHandlerEx

handle incoming frames by packet type event distributor

RxToTxOptions convert receive serial options to transmit command class
Check_not_legal_response_job verify multicast/supervision encapsulation command class

ZAF_Common_interface.h
function role called from
ZAF_getAppHandle get pointer to ZWave configuration, queues HW event handler
ZAF_GetSecurityKeys bit-encoded list of security keys available command class
ZAF_getCPHandle get pointer to CommandPublisher frame handler

zaf_event_helper.[ch]
function role called from
ZAF_EventHelperInit start event queue ApplicationTask

ZAF_TSE.[ch]
function role called from
ZAF_TSE_TXCallback callback for Transport_SendRequestEP ZAF status handler

The Called From column indicates where the function is used in the demo. It isn't clear what has to go in
ApplicationInit() and what in ApplicationTask().

A complete ZWave device must implement more functionality. ZAF is designed to easily support these extra
requirements, including all command classes for ZWave+, Smart Start, and application groups and the True
Search Engine (lifeline support). The five demo programs in the SDK have a similar architecture to each other.
They have more application states than ours, and use the event queue not just for ZWave functionality but also

for custom events that manage the application state. The logic defining the state machine/event handler is often
fairly involved. Comparing our demo against those in the SDK, as well as the ZAF specification INS14259,
gives us an idea of the additional work we would need to do to make this a full-fledged product.

ZWave+ Command Classes. At the start of Step 3a we listed the command classes required by ZWave+. The
common ones are available in the SDK under ZAF/CommandClasses and can be included as a project module or
by linking the source and header files into the project, as we did for CC_Security and CC_Supervision.

Application Events. We have used only the events ZAF generates for button presses in handle_event(). The
SDK demos use a richer set to handle basic functionality as well as application-specific states, and they use a
separate job queue to temporarily store work when reacting to button presses in the event loop. The events are
defined in the header file events.h in the source directory; ZAF provides no standard list, and all are application-
specific. The complete list over the five SDK demos shows us the type of functionality they track; a star (*)
before an event means it's provided in most of the demos and can be considered key functionality.

EVENT_APP_* Lock Power
Strip

Sensor
PIR

OnOff
Switch

Wall Ctlr

* INIT x x x x

* REFRESH_MMI x x x x

* FLUSHMEM_READY x x x x x

* SMARTSTART_IN_PROGRESS x x x x x

* LEARN_IN_PROGRESS x x x x x

LEARN_MODE_FINISH x

TOGGLE_LEARN_MODE x

* NEXT_EVENT_JOB x x x

* FINISH_EVENT_JOB x x x x

BASIC_STOP_JOB x

BASIC_START_JOB x

NOTIFICATION_START_JOB x

NOTIFICATION_STOP_JOB x

START_TIMER_EVENTJOB_STOP x

CC_BASIC_JOB x

CC_SWITCH_MULTILEVEL_JOB x

CENTRAL_SCENE_JOB x

SEND_OVERLOAD_NOTIFICATION x

SEND_BATTERY_LEVEL_REPORT x x

IS_POWERING_DOWN x x

START_USER_CODE_EVENT x

START_KEYPAD_ACTIVE x

FINISH_KEYPAD_ACTIVE x

PERIODIC_BATTERY_CHECK_TRIGGER x

REFRESH_MMI handles the network indicator. FLUSHMEM_READY resets non-volatile memory and re-
loads the application configuration or does a soft reset, depending on the application state.
SMARTSTART_IN_PROGRESS, LEARN_IN_PROGRESS, LEARN_MODE_FINISH, and
TOGGLE_LEARN_MODE track progress through inclusion and transition into SmartStart modes.

Job Queue. The job queue is used to delay executing actions while the application is busy processing
something else. It stores application events. The demos push NEXT_EVENT_JOB on the event queue which,
when handled, will take the top job event and push it onto the event queue, or FINISH_EVENT_JOB if there are
no jobs. Only one event is moved at a time, to disturb the main event flow as little as possible.
NEXT_EVENT_JOB is typically pushed after a transmission is done, either if it's sent directly or in a callback.
The use of the job queue can be quite simple, as in the PowerStrip demo where it's used to cleanup a notification

and switch to the idle application state, or complex, as in the WallController demo which uses it to work through
central scene notifications, or may not be used at all, as in the SwitchOnOff demo.

SmartStart. The SDK demos implement SmartStart by finer control of the application state. They define an
enumeration _STATE_APP_ to track progress through start-up and inclusion, and a function AppStateManager()
to transition through the states as application events come in. In our demo we've simplified the state to a couple
of booleans, tracking if the log is running or we're including or excluding the device, and transitions are scattered
through the code. The AppStateManager() replaces our handle_event(). SmartStart learn mode begins in
EVENT_APP_INIT, the initialization state, with a call to ZAF_setNetworkLearnMode(). It also triggers when
learning is stopped by a button press (Button1 in our list), if inclusion fails, or if the device is excluded from a
network.

Association Groups. Association groups are created with several defines in app_config.h, including
NUMBER_OF_ENDPOINTS, MAX_ASSOCIATION_GROUPS, MAX_ASSOCIATION_IN_GROUP,
AGITABLE_LIFELINE_GROUP, AGITABLE_ROOTDEVICE_GROUPS,
AGITABLE_ENDPOINT_*_GROUPS, and ASSOCIATION_ROOT_GROUP_MAPPING_CONFIG. The first
three are numbers, the fourth a comma-separated list of pairs of command classes and commands, and the
remaining are described in INS14259 Section 5.2.4. The application contains globals to hold the setup, with
agiTableLifeLine[] initialized to AGITABLE_LIFELINEGROUP and agiTableRootDeviceGroups[] to
AGITABLE_ROOTDEVICE_GROUPS. These are passed to CC_AGI_LifeLineGroupSetup() and
AGI_ResourceGroupSetup() during application initialization. The WallController demo has a simple association
group setup, the PowerStrip a much more complicated one, with multiple endpoints. Sections 5.6.2 and 7.1.1 of
INS14259 also have more details.

True Status Engine. The True Status Engine is used to send reports and notifications to the lifeline after a short
delay to avoid packet collisions and spamming the network. Command classes will define callback functions
CC_<cmdclass>_report_stx(). The function has two arguments, transmit options with the destination filled in,
and a command-specific data structure that includes as its first member a RECEIVE_OPTIONS_TYPE_EX
structure with information about the incoming frame. The callback will build the appropriate frame and will call
Transport_SendRequestEP(). The application should call ZAF_TSE_Trigger() on an event or state change that
generates traffic to the lifeline.

NVM. To use non-volatile memory the application must define a structure to hold application data that must
persist over power loss, and an associated global variable. Accessing memory is done through the driver in $
{SDK}/platform/emdrv/nvm3 and ${SDK}/ZAF/ApplicationUtilities/ZAF_nvm3_app.[ch]. Call
ApplicationFileSystemInit() to get a pointer to the file system stored in NVM, normally when loading the
configuration during application initialization. ${SDK}/ZAF/ApplicationUtilities/ZAF_file_ids.h defines some
standard entries that the framework or command classes will use or provide:

ZAF_FILE_ID_APP_VERSION ZAF version numbers (required)

ZAF_FILE_ID_ASSOCIATIONINFO groups per endpoint

ZAF_FILE_ID_USERCODE receive options, user ID

ZAF_FILE_ID_BATTERYDATA last reported level

ZAF_FILE_ID_NOTIFICATIONDATA alarm status

ZAF_FILE_ID_WAKEUPCCDATA master node and sleep period

Each has an accompanying ZAF_FILE_SIZE_* and both are needed in the global variable that contains all file
system entries. Application-specific data is defined by setting a file identifier, normally 0, and the size of the
structure. The first can go in config_app.h, the second in the application source. For example, a binary switch
might need to store the application version, association groups, battery level, and switch state. The local NVM
structure and combined file system would look like:

struct NVMAppData { uint8_t switchOn; }

SFileDescriptor fileIDs[] = {

{ .ObjectKey=ZAF_FILE_ID_APP_VERSION, .iDataSize=ZAF_FILE_SIZE_APP_VERSION },

{ .ObjectKey=ZAF_FILE_ID_ASSOCIATIONINFO, .iDataSize=ZAF_FILE_SIZE_ASSOCIATIONINFO },

{ .ObjectKey=ZAF_FILE_ID_BATTERYDATA, .iDataSize=ZAF_FILE_SIZE_BATTERYDATA },

{ .ObjectKey=0x00, .iDataSize=sizeof(struct NVMAppData) }

}

EFileSysVerifyStatus fileStatus[sizeof_array(fileIDs)];

Associations are stored after learning is complete with a call to AssociationInit(). The application version is
stored when initializing the NVM file system or after a reset with a call to nvm3_writeData(). Command classes
may or may not handle their own file: wake-up and notification do, battery and user code do not. If not then the
application is responsible for saving changes. Getting information out of NVM is done with nvm3_readData().
Both take the file ID, a pointer to the source or destination memory, and the size of the structure. Application
data should be written after every state change.

Power Management. There are five power management modes: EM0 (active), EM1 (sleep), EM2 (deep sleep),
EM3 (stop), EM4 (hibernate), and EM4 (shutdown). The data sheet DSH14299 defines which hardware
modules are active in which modes. The LETimer, for example, is available in EM0, EM1, and EM2, as is the
LESense sensor interface. Peripherals are grouped in two domains. The first includes one analog comparator,
the pulse counter, ADC, LETimer, LESense, and analog port. The second has the other analog comparator,
capsense, voltage and current DACs, UART, and I2C. If all members of a group are unused then all are powered
off in low-power modes. Wake-up times vary, being 3 clocks out of EM1, 4-11 us from EM2 or EM3, 90 us
from hibernate, and 300 us from shutdown. The power manager is set up in
${SDK}/ZWave/API/ZW_PowerManager_api.h, which defines a power level SPowerLock_t to prevent the chip
from entering a lower power mode, and
${SDK}/ZAF/ApplicationUtilities/PowerManagement/ZAF_PM_Wrapper.h, which has functions to set this
level. PM_TYPE_RADIO will prevent the chip from entering EM2-4, PM_TYPE_PERIPHERAL from EM3-4.
ZAF_PM_StayAwake() and ZAF_PM_Cancel() bracket the code section where the power level is set.
ZAF_PM_Register() sets up the lock for the power level. For example, the wakeup command class will set
PM_TYPE_RADIO for 10 seconds after a wake-up notification, canceling it early after a No More Information
has been sent. Note that the AppTimer also provides EM4 functionality.

	Z-Wave Humidity-Temperature Sensor Project
	Step 1: Setup and Framework
	Build Process
	SDK Contents
	ZWave Application Framework
	Creating A Project

	Step 2a: Hardware - Buttons and LEDs
	Implementation

	Step 2b: Hardware - HT Sensor
	Step 2c: Hardware - LCD
	Step 3a: ZWave - Inclusion and Exclusion
	Step 3b: ZWave - NIF and CC_VERSION
	Step 3c: ZWave - CC_SENSOR_MULTILEVEL
	Step 3d: ZWave - CC_CONFIGURATION
	Step 3e: ZWave - Security
	Step 4: Application Framework

